

AGN physics from synergism of Gaia and VLBI absolute astrometry

Leonid Petrov Astrogeo Center

Yuri Kovalev (ASC, Moscow), Alexander Plavin (MFTI, Moscow)

Astrometry is a foundation of astronomy:

Foundation (astrometry):

Palace (physics):

How to build a palace on the foundation?

Is there anything which is more precise than *Gaia***? Yes! — VLBI**

VLBI and *Gaia* position uncertainties

Median error: **VLBI RFC**: 0.5 mas Median error: *Gaia* **DR1**: 2.2 mas

VLBI/*Gaia* comparison

VLBI Radio Fundamental Catalogue (**14,786 sources**) on 2018.03.01 and Gaia DR1 ($1.14 \cdot 10^9$ objects)

Green: 7,716 VLBI/Gaia matches P < 0.0002**Blue: VLBI sources without** Gaia matches

Distribution of VLBI/*Gaia* arc lengths

There are **486 outliers** (7%) at significance level 99%.

Outliers range: 1–400 mas (median: 10 mas).

Is that it? What about offset directions?

Distribution of VLBI/*Gaia* position offset angles

Main finding: no preference at 0° , 180° (VLBI declination errors) No deviation from the isotropy.

How the AGNs look like at mas scale?

Generic property: core-jet morphology:

- Images are available for 86% sources (the number will increase)
- Jets can be reliably determined at 50% images (the share will raise)

AGNs are intrinsically asymmetric sources!

Distribution of AGN jet directions in the VLBI/*Gaia* sample

No deviation from the isotropy

Distribution of VLBI/Gaia position offset angles with respect to jet direction

VLBI/*Gaia* offsets prefer directions **along the jet!!** The pattern can be explained only by core-jet morphology.

Systematic effects:

- Contribution of core-shift to dual-band positions: 0.02–0.05 mas.
- Contribution of source structure to VLBI positions: median 0.06 mas.
- Contribution of optical structure: may reach mas level.

Interferometer (**VLBI**) and a power detector (Gaia) have a fundamentally different response to source structure.

- VLBI: Sensitive to the position of the most compact component
- *Gaia*: Sensitive to the position of the centroid

The differences Gaia minus VLBI provide offset of the centroid wrt jet base.

Contribution of optical structure

There are over 20 known optical jets with sizes 0.5-20''

At z=0.07, visible optical jet of J1145+1936 would shift centroid at 5 mas

At z=0.3, visible optical jet of J1223+1230 would shift centroid at 1.2 mas Conclusion: known optical jets at farther distance can cause centroid shifts at 1–2 mas level

Making science from VLBI/*Gaia* offsets

- 1. we establish discrepancy VLBI/Gaia;
- we formulate a hypothesis: optical jets at 1–100 mas scales are omnipresent;
- 3. we deduce verifiable predictions:
 - histogram of position offsets ψ will become clearer (in 41 days);
 - offset between AGN positions in polarization \perp jet (1–2 years);
 - jitter in AGN *Gaia* positions (late 2022).

Impact of AGN variability

Image centroid and VLBI/Gaia offsets will change due to

- 1. optical variability and
- 2. jet kinematics.

Centroid of a core-jet morphology

Slide 14(19)

Direction of the centroid change after a flare

Correlation of the centroid wander and light curve

• Two component stationary model

$$C_f(t) = F(0) \frac{\mathcal{O}_j(t) - \mathcal{O}_j(0)}{F(t) - F(0)} + \mathcal{O}_j(t)$$

$$F_f(t) = F(0) \frac{\mathcal{O}_j(0)}{C_x(t)}$$

We can locate the position of the flaring component $C_f(t)$ and its flux density $F_f(t)$;

Stability of $C_x(t)$ provides a stationarity test.

• Two component stationary model

Solvable using jet kinematics from VLBI

A solution can by verified with spectropolarimetry!

Prediction of AGN position jitter

A consequence of VLBI/Gaia offset interpretation is a prediction of AGN jitter in *Gaia* time series at a level up to <u>several milliarcseconds</u>.

A jitter is

- a) stochastic;
- b) confined to a small region;
- c) correlated with light curve;
- d) occurs primarily along the jet;
- e) mean value with respect to VLBI position is not zero;
- f) first derivative (PM) is not zero.

Naive model:AGNs are point-like and stable;Realistic model:AGNs have variable structure and unstable.

Objectives of VLBI/*Gaia* **position offset study:**

- Are optical jets omnipresent?
- To answer the question: where AGN flares happen:
 - at the accretion disk?
 - at the jet base?
 - at the hot spot on the jet?
- To get estimates of distance between the core jet and the accretion disk
- To measure optical jet dominance
- How optical jet dominance, i.e. presence of strong optical jet affect other AGN properties?
- Does optical jet dominance depend on the AGN class?
- Does optical jet dominance depend on the Doppler factor?
- Does \mathcal{O}_j depend on distance?

Summary:

- VLBI/*Gaia* residuals have systematics caused by core-jet morphology;
- **VLBI** and *Gaia* have different sensitivity to structure;
- The most plausible explanation: optical jets at scales 1–200 mas;
- Consequence of the optical jet presence: source position jitter;
- Position jitter + light curve = optical resolution at mas scale;
- Gaia VLBI > Gaia + VLBI: we can determine the region of optical flares, its kinematics, and its flux density.

 References:
 arxiv.org/abs 1611.02630, 1611.02632, 1704.07365

 RFC preview:
 http://astrogeo.org/rfc

Backup slides

Core-shift

• Core is the optically thick part of the jet;

- Core centroid is shifted with respect to the jet base;
- The shift is frequency dependent;
- Results of core-shift measurements:
 - Contribution to 8 GHz positions: $~\sim\!0.2$ mas;
 - Contribution to dual-band positions: 0.02-0.05 mas.
- Conclusion: the effect is too small

Contribution of source structure to VLBI position

- VLBI does not measure position of the centroid
- Source structure contribution depends on image Fourier transform
- The most compact image component has the greatest impact on position
- Examples:

 Test VLBI experiment processed with source structure contribution applied: Median VLBI position bias: 0.06 mas Median image centroid offset: 0.25 mas
 Conclusion: the effect is too small

Completeness of the RFC

 $\log N$ versus $\log S$ diagram. S_{corr} @ 8 GHz at baselines 200–1000 km

Number of matches

γ -ray	Fermi:	15%
X-ray	Chandra	3%
infra-red	WISE: 3.4 μ m	74%
infra-red	2MASS:	36% (point sources)
infra-red	2MASS:	11% (extended sources)
optic	Gaia:	53%
optic	PanSTARRS:	69% (78%)
optic	known redshifts	42%
radio	NVSS 1.4 GHz	91% (99.8%)
radio	TGSS 0.15 GHz	72% (76%)

Jet kinematics

Slide 25(19)