

VLBI astrometry in the post-Gaia epoch

Leonid Petrov

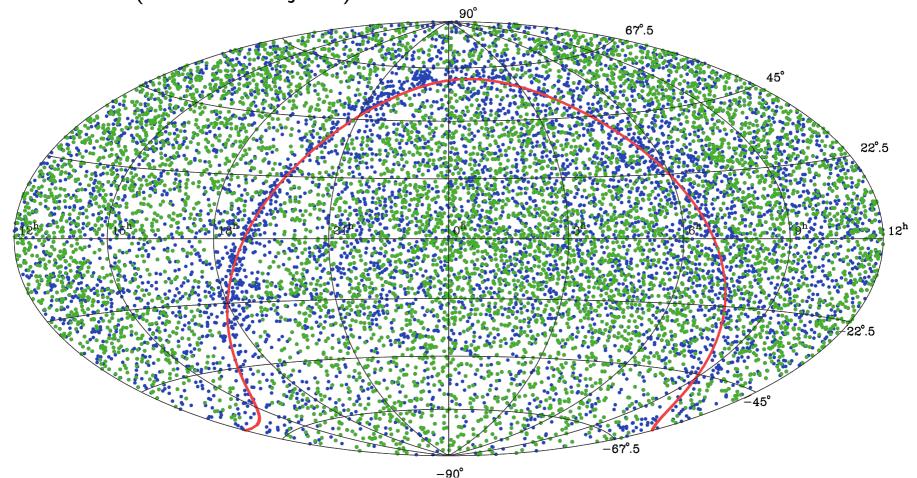
VLBI astrometry surveys. Status on 2018.03.01

Statistics:

Number of observed sources: 27,719 Number of detected sources: 14,786 Number of sources imaged: 12,759 Number of images: 63,301

Matches:

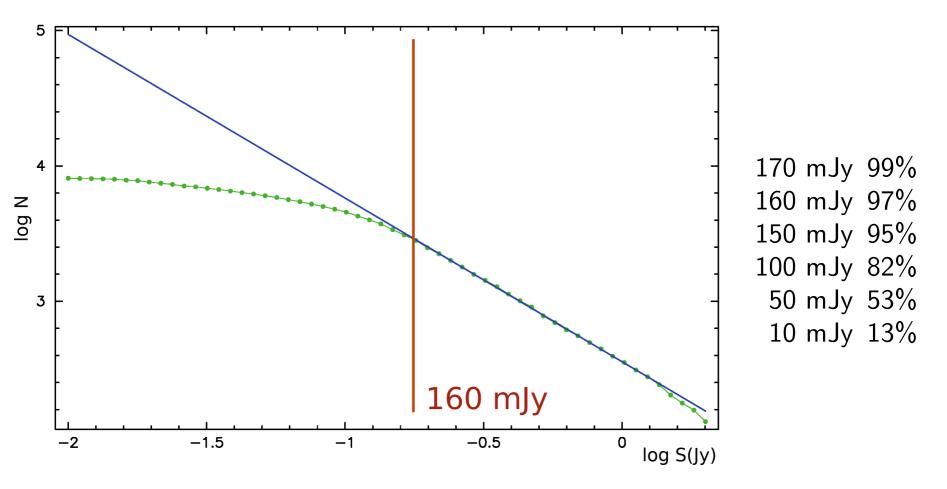
γ -ray	Fermi:	15%
X-ray	Chandra	3%
infra-red	WISE:	74%
infra-red	2MASS:	36% (point sources)
optic	Gaia:	52%
optic	PanSTARRS:	69% (78%)
optic	known redshifts	42%
radio	NVSS	91% (99.8%)
radio	TGSS	72% (76%)


RFC position accuracy

Percentile of accuracy:

20%	< 0.30	mas
50% (median)	< 0.90	mas
80%	< 2.5	mas
90%	< 5.2	mas
94.8%	< 10	mas

Flux density @ X-band: [0.003, 22] Jy, median: 101 mJy


VLBI Radio Fundamental Catalogue (**14,786 sources**) on 2018.03.01 and *Gaia* DR1 ($1.14 \cdot 10^9$ objects)

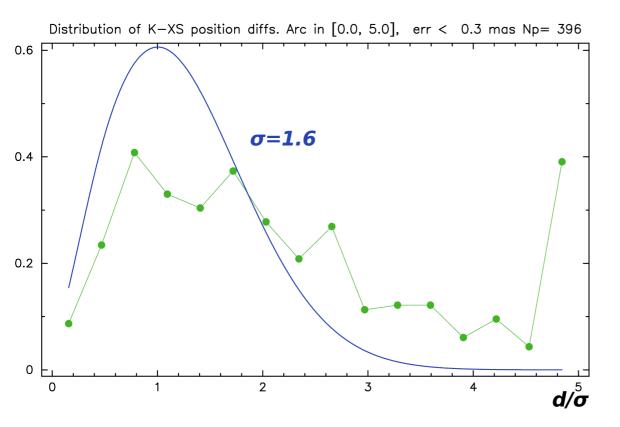
Green: 7,716 VLBI/*Gaia* matches *P* < 0.0002 **Blue: VLBI sources without** *Gaia* matches

Completeness of the RFC

 $\log N$ versus $\log S$ diagram. S_{corr} @ 8 GHz at baselines 200–1000 km

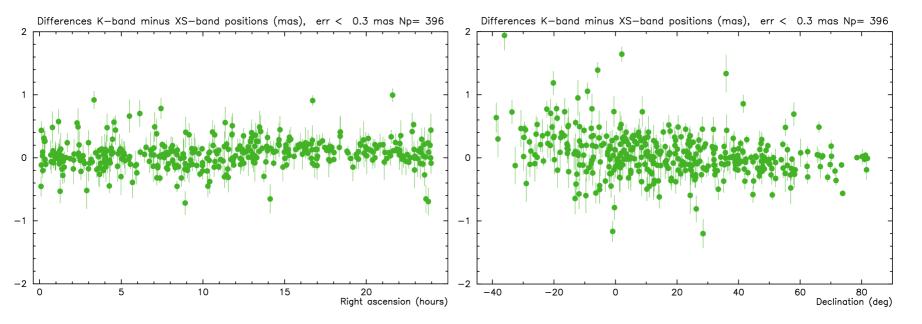
Beyond RFC

Phase-referencing catalogues:

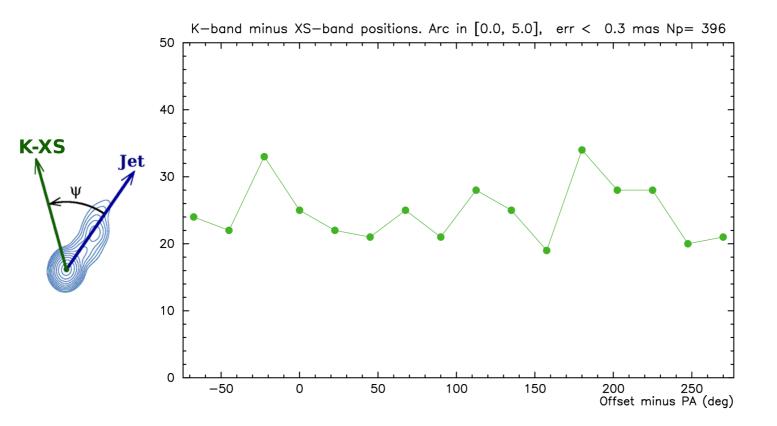

- mJive-20: 4822 source
- Lockman Hole, Hubble Deep Field-North, NOAO Bootes Field: ~ 100 sources

High frequency observations for images/detection:

- K/Q survey Lanyi, et al. 2010
- K-band VLBA, A. de Witt, on-going
- VERA and/or KVN, $\sim\!1200$ sources


K-band astrometry

Total number of sources:	1039
With position accuracy < 1 mas:	750
With position accuracy < 0.2 mas:	363
With position accuracy < 0.1 mas:	148

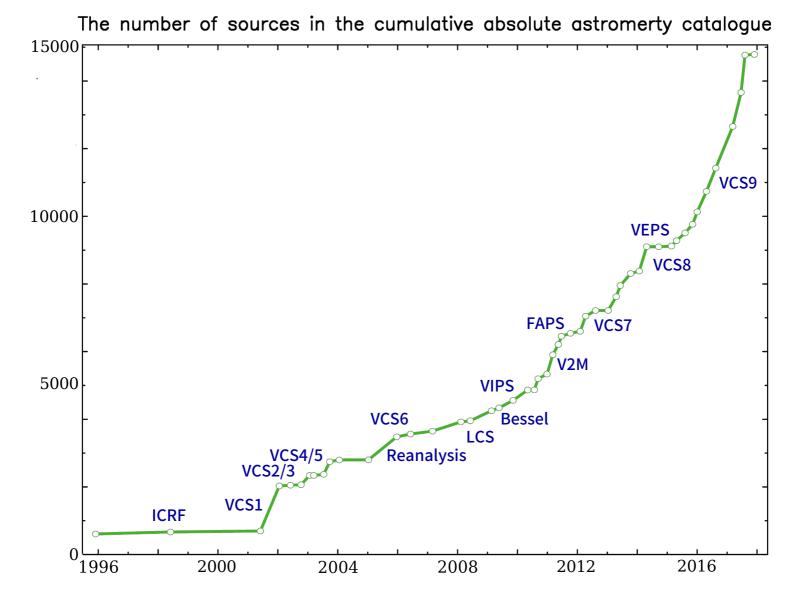


Are there systematic difference?

K-XS position differences:

Distribution of K-XS offset directions wrt jet directions

Conclusion: no evidence of systematic K/XS position differences

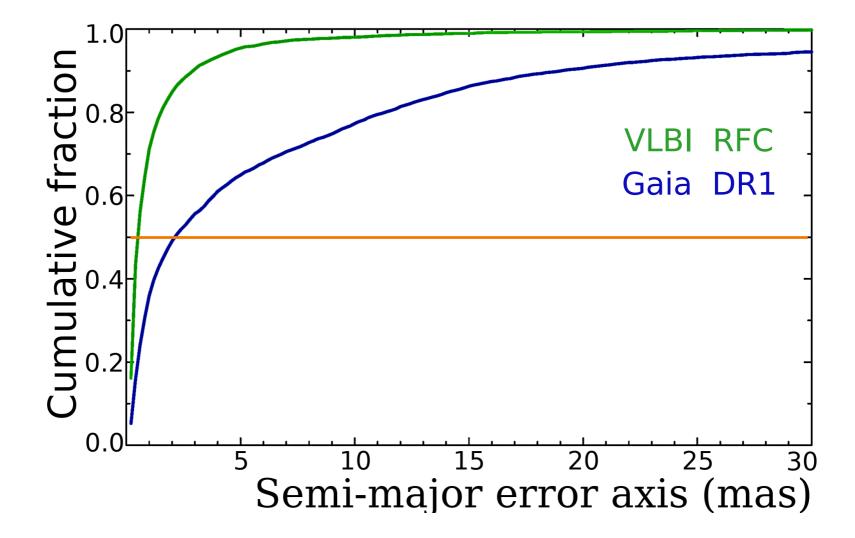

VLBI survey strategies:

- To observe new VLBI sources
 - To extend the number of calibrators all-sky
 - To extend the number of calibrators in a given zone
 - To fill "empty" zones
 - To observe "interesting" sources
 - To reach completeness
 - To observe all in-beamers in the vicinity of calibrators
- To re-observe known sources
 - To improve position accuracy
 - To improve images
 - To determine core-shift
 - To observe at other (higher) frequencies
 - To follow-up peculiar sources

What is new in modern surveys:

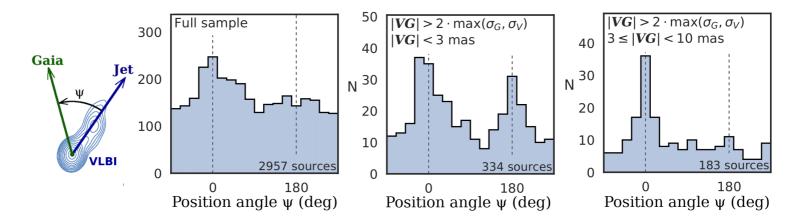
- Gradual increase of field of view from 2'' to 5' (whole beam)
- Gradual lifting selection bias towards flat spectrum
- Wider bandwidth: $64 \rightarrow 2048$ Mbps. Detection limit: 6-20 mJy
- Automatic scheduling
- (semi)Automatic imaging
- $X/S \longrightarrow X/C$, K-only, X-only, C-only, S-only data
- Rate: VLBA: 20–24 target sources per hour, 50% detection rate.

VLBI absolute astrometry: recent history



Cost: 4000 hours (excluding RDV and IVS)

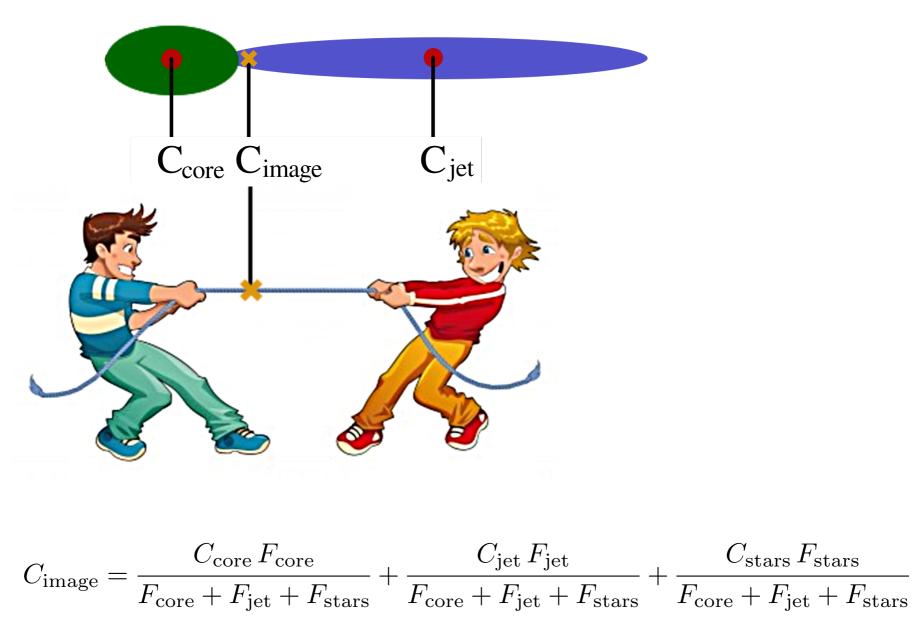
VLBI absolute astrometry survey: where to go?


- Get more source?
 - to double # source: 1500 hours VLBA time
 - to double # source density: 5500 hours VLBA time
- To improve position accuracy?
 - to reach 0.2-0.3 mas accuracy for all VLBA sources: 2000 at VLBA
 - to reach 0.2–0.3 mas accuracy for all VLBA/Gaia sources: 1000 at VLBA
- To survey Galactic plane with K-band?
 - Re-observe known sources: 300 hours VLBA time
- To survey ecliptic plane down to 50 mJy?
 - detection survey: 300 hours (CVN)
 - fine astrometry: 300 hours (CVN+IAA, VLBA)
- To re-image interesting source?

VLBI and *Gaia* **position uncertainties**

Median error: **VLBI RFC**: 0.5 mas Median error: *Gaia* **DR1**: 2.2 mas

Discovery of systematic differences VLBI/*Gaia*



Interpretation: VLBI and *Gaia* see sources differently:

VLBI reports position of the compact component (if there is only one) Gaia reports position of the centroid

New observable appeared: $\mathcal{O}_{\rm j}$

Centroid of a core-jet morphology

Slide 16(21)

Impact of discovery of VLBI/Gaia offsets on AGN physics

- Possibility to study optical jets at 1–100 mas resolution a) statistically; b) case-by-case
- Possibility to separate emission in the accretion disk from jet
- Possibility to answer the question where the flares occur: at the accretion disk, at the core base or at the hot spot
- Better understanding the nature of CSO
- What is needed?
 - better images
 - better position accuracy
 - applying source structure contribution in data analysis

Impact of discovery of VLBI/Gaia offsets on astrometry

- We still do not know unmovable sources (AGNs are not);
- There is a limit beyond that positions from technique A and B are not comparable;
- For VLBI/*Gaia* this limit is 1–2 mas;
- A jitter in *Gaia* AGN positions is predicted;
- The fundamental coordinate systems from different techniques have to coexist;
- Impossible to say which is the best: *Gaia*-DR99, or RFC, or ICRF-2100;
- Future comparison of VLBI/optic will focus on astrophysics interpretation.

Wide impact of *Gaia* on fundamental astronomy

- Is VLBI astrometry for study of Galaxy kinematics competitive with *Gaia*?
 - VLBI stellar parallax determination can VLBI compete?
 - VLBI maser parallax/proper motion determination can VLBI compete?
- Ground astrometry of Galactic plane objects is limited to
 - objects weaker 21 mag (telescope larger 2m);
 - objects not visible in optical range, like pulsars, masers;
- VLBI/Gaia AGN program is emerging;

Radio absolute astrometry: where to go — my view

- Field of "extensive astrometry":
 - ecliptic plane (50 and 30 mJy);
 - unassociated sources (f.e. Fermi)

Expected growth rate: 200–500 new sources per year.

- <u>Extensive</u> era of radio astrometry is followed by with <u>intensive</u> era
 - The areas that need nanorad level accuracy: $1 \quad (2 \quad (2 \quad \text{observables})$
 - 1. \mathcal{O}_j , \mathcal{O}_t observables;
 - 2. space navigation;
 - 3. pulsar timing/VLBI differences.

Goals:

- improve positions of $\sim\!9000~{\rm VLBI}/{\it Gaia}$ matches down to 0.2–0.3 mas.
- derive source images, apply source structure correction.
- determine jet direction

Absolute astrometry without imaging is close to junk in post-Gaia era.

Summary of debatable items

- Whether the list of VLBI source (15k absolute and 5k differential) should be expanded?
- How deep should we observe ecliptic band? •
- Should we get accuracy below 0.3 mas for specific sources? •
- Can VLBI compete with *Gaia* for parallax/proper motions of stars? •
- Can VLBI compete with *Gaia* for study of Galactic kinematics? •
- What is the merit of mjive20-style astrometry? •