



# **Discovery of optical jets from VLBI**/*Gaia* **comparison**

# Leonid Petrov Astrogeo Center

Slide 1(21)

## The Radio Fundamental Catalogue

# sources: 14768

percentile of accuracy:

| 20%          | < 0.30 | mas |
|--------------|--------|-----|
| 50% (median) | < 0.90 | mas |
| 80%          | < 2.5  | mas |
| 90%          | < 5.2  | mas |
| 94.8%        | < 10   | mas |

Flux density @ X-band: [0.003, 22] Jy, median: 101 mJy

Used type of observations:

Number of observing sessions

| Dual-band: | 55% | 1     | 45% |
|------------|-----|-------|-----|
| 8 GHz      | 33% | 1–2   | 77% |
| 5 GHz      | 10% | 1–5   | 90% |
| 22 GHz     | 2%  | 10+   | 8%  |
| 2 GHz      | 1%  | 100 + | 3%  |

56,147 images in FITS format of 9304 compact radio sources

# **VLBI**/*Gaia* comparison

VLBI Radio Fundamental Catalogue (**14,768 sources**) on 2017.09.01 and Gaia DR1 ( $1.14 \cdot 10^9$  objects)



**Green: 7,669 VLBI**/Gaia matches P < 0.0002**Blue: VLBI sources without** Gaia matches

#### **VLBI** and *Gaia* position uncertainties



Median error: VLBI RFC: 0.5 mas

Median error: Gaia DR1: 2.2 mas

## **Distribution of VLBI**/*Gaia* arc lengths



There are **486 outliers** (7%) at significance level 99%.

Outliers range: 1–400 mas (median: 10 mas).

**Distribution of VLBI**/*Gaia* position offset angles



Main finding: no preference at  $0^{\circ}$ ,  $180^{\circ}$  (VLBI declination errors) No deviation from the isotropy. **Distribution of AGN jet directions in the VLBI**/*Gaia* sample



No deviation from the isotropy

# **Distribution of VLBI**/*Gaia* position offset angles with respect to jet direction



VLBI/Gaia offsets prefer directions along the jet!!

The pattern can be explained only by core-jet morphology

# **VLBI**/*Gaia* differences: explanation

Facts:

- There are 7% sources with significant VLBI/Gaia offsets (1–400 mas).
- While position angles of VLBI/*Gaia* offsets and jet position angles, taken separately, are distributed uniformly, their difference has significant peaks at 0 and 180 degrees.

To explain the pattern, systematic shifts VLBI/Gaia at 1–2 mas level are required.

#### Possible explanations:

- Blame radio: core-shift;
- Blame radio: the contribution of source structure to VLBI positions;
- Blame *Gaia*: the contribution of optical jets or the accretion disks to centroid positions.

# **Core-shift**

• Core is the optically thick part of the jet;



- Core centroid is shifted with respect to the jet base;
- The shift is frequency dependent;
- Results of core-shift measurements:
  - Contribution to 8 GHz positions:  $~\sim\!0.2$  mas;
  - Contribution to dual-band positions: 0.02-0.05 mas.
- Conclusion: the effect is too small

# Contribution of source structure to VLBI position

- VLBI does not measure position of the centroid
- Source structure contribution depends on image Fourier transform
- The most compact image component has the greatest impact on position
- Examples:



 Test VLBI experiment processed with source structure contribution applied: Median VLBI position bias: 0.06 mas Median image centroid offset: 0.25 mas
 Conclusion: the effect is too small

# **Contribution of optical structure**

There are over 20 known optical jets with sizes 0.5-20''



At z=0.07, visible optical jet of J1145+1936 would shift centroid at 5 mas

At z=0.3, visible optical jet of J1223+1230 would shift centroid at 1.2 mas Conclusion: known optical jets at farther distance can cause centroid shifts at 1–2 mas level

# **Optical jets interpretation**

#### Argumentation:

- 1. Only core-jet morphology can cause preferable direction of  $\mathsf{VLBI}/\mathit{Gaia}$  offsets
- 2. Contribution of radio morphology is one order of magnitude too small
- 3. Optical jets are known
- 4. Known optical jets are co-spatial

## So far, no direct proof:

- large optical jets that we see, do not affect *Gaia*.
- small optical jets that affect *Gaia* we do not see

#### How to prove it?

To predict observational consequences.

#### What are expected observational consequences?

Image centroid and, therefore VLBI/Gaia offsets will change due to

- 1. optical variability and
- 2. jet kinematics.



#### Centroid of a core-jet morphology



Slide 15(21)

#### Direction of the centroid change after a flare



## Correlation of the centroid wander and light curve

1. Two component stationary model

$$C_f(t) = F(0) \frac{\mathcal{O}_j(t) - \mathcal{O}_j(0)}{F(t) - F(0)} + \mathcal{O}_j(t)$$

$$F_f(t) = F(0) \frac{\mathcal{O}_j(0)}{C_x(t)}$$

We can locate the position of the flaring component  $C_f(t)$  and its flux density  $F_f(t)$ ;

Stability of  $C_x(t)$  provides a stationarity test.

## Correlation of the centroid wander and light curve

2. A general non-stationary model

$$\mathcal{O}_{j}(t) = \sum_{i} \frac{v(t - t_{0i}) F_{j}(t) + C_{i}(t_{0i}) F_{j}(t_{0i})}{F_{c}(t) + \sum_{i} F_{j}(t)}$$

$$F_{t}(t) = F_{c}(t) + \sum_{i} F_{j}(t)$$

$$F_{j}(t) = 0 \quad \forall t < t_{0i}$$

Not solvable without a use of addition information

3. Two-component non-stationary case

$$F_j(t) = \frac{\mathcal{O}_j(t) F_t(t) - \mathcal{O}_j(t_b) F_t(t_b)}{v (t - t_b)} + F_j(t_b)$$
  

$$F_c(t) = F_t(t) - F_j(t_b)$$
  

$$d_j(t) = d(t_b) + v(t - t_b)$$

If ejection start time  $t_b$  and component speed v are known, we can

- locate the **position** of the jet component
- determine its **flux density** as function of time
- determine **flux density** of the core as a function of time

# **AGN** position jitter

A consequence of VLBI/Gaia offset optical jet interpretation is prediction of AGN jitter in Gaia time series at a level of several milliarcseconds

A jitter is

- a) stochastic;
- b) confined to a small region;
- c) correlated with light curve;
- d) occurs primarily along the jet;
- e) mean value with respect to VLBI position is not zero.

Naive model:AGNs are point-like and stable;Realistic model:AGNs have variable structure and unstable.

#### **Future observing programs**

• improve VLBI positions of  $\sim 6000$  matches at  $\delta > -40^{\circ}$  and get jet directions. Goal: 0.2 mas. Status: pending.



- improve VLBI positions of 758 matches at  $\delta < -40^{\circ}$ , get jet directions. Goal: 0.3 mas. Status: **ongoing**
- Imaging peculiar VLBI/Gaia matches with ROBO AO. Status: ongoing
- Imaging VLBI/Gaia matches with large offsets with HST. Status: pending
- Getting spectra of peculiar VLBI/Gaia matches. Status: pilot
- Specta-polarimetric observations of VLBI/Gaia matches. Status: pending
- Redshift determination. Status: pilot.
- Ecliptic plane survey. Status: ongoing.

# Summary:

- VLBI/Gaia residuals have systematic caused by core-jet morphology;
- VLBI position is related to the most compact detail, an AGN core;
- *Gaia* position is related to the image centroid within the PSF;
- The most plausible explanation: optical jet at scales 1–200 mas;
- Consequence of the optical jet presence: source position jitter;
- Position jitter + light curve = optical resolution at mas scale;
- VLBI +  $Gaia \longrightarrow$  we can determine the region of optical flares its kinematics and its flux density.

 References:
 arxiv.org/abs 1611.02630, 1611.02632, 1704.07365

 RFC preview:
 http://astrogeo.org/rfc

# **Backup slides**

#### **Completeness of the RFC**

 $\log N$  versus  $\log S$  diagram.  $S_{\text{corr}}$  @ 8 GHz at baselines 200–1000 km



#### Number of matches

| $\gamma$ -ray | Fermi:            | 15%                    |
|---------------|-------------------|------------------------|
| X-ray         | Chandra           | 3%                     |
| infra-red     | WISE: 3.4 $\mu$ m | 74%                    |
| infra-red     | 2MASS:            | 36% (point sources)    |
| infra-red     | 2MASS:            | 11% (extended sources) |
| optic         | Gaia:             | 53%                    |
| optic         | PanSTARRS:        | 69% (78%)              |
| optic         | known redshifts   | 42%                    |
| radio         | NVSS 1.4 GHz      | 91% (99.8%)            |
| radio         | TGSS 0.15 GHz     | 72% (76%)              |

#### Jet kinematics



Slide 25(21)