Use of VLBI/Gaia position offsets for AGN physics

Leonid PetrovNASA GSFC, USAYuri KovalevAstro Space Center, RussiaAlexandr PlavinMFTI, Russia

Astrometry is a foundation of astronomy:

Foundation (astrometry):

Palace (physics):

How to build a palace on the foundation?

VLBI/Gaia comparison

VLBI Radio Fundamental Catalogue (**15,155 sources**) on 2018.09.01 and Gaia DR2 ($1.69 \cdot 10^9$ objects)

Green: 9,081 VLBI/Gaia matches P < 0.0002Blue: VLBI sources without Gaia matches

VLBI and Gaia position uncertainties

Median error: **Gaia DR2**: 0.34 mas Median error: **VLBI RFC**: 0.74 mas

VLBI is not a king of absolute astrometry any more!

The distribution of normalized VLBI/Gaia arc-lengths over 9033 AGNs.

1/6 matched sources are outliers: $a/\sigma_a > 4$ What is there nature?

How the AGNs look like at mas scale?

Generic property: core-jet morphology:

- Images are available for 88% sources (the number will increase)
- Jets can be reliably determined at 45% images (the share will raise)

AGNs are intrinsically asymmetric sources!

Distribution of VLBI/Gaia position offset angles with respect to jet direction

VLBI/Gaia offsets prefer directions along the jet!!

The pattern can be explained **only** by core-jet morphology.

Systematic effects:

- Contribution of core-shift to dual-band positions: 0.02–0.05 mas.
- Contribution of source structure to VLBI positions: median 0.06 mas.
- Contribution of optical structure: may reach mas level.

Interferometer (VLBI) and a power detector (Gaia) have a fundamentally different response to source structure.

- VLBI: Sensitive to the position of the most compact component
- Gaia: Sensitive to the position of the centroid

The differences Gaia minus VLBI provide offset of the centroid wrt jet base.

Contribution of optical structure

There are over 20 known optical jets with sizes 0.5-20''

At z=0.07, visible optical jet of J1145+1936 would shift centroid at 5 mas

At z=0.3, visible optical jet of J1223+1230 would shift centroid at 1.2 mas Conclusion: known optical jets at farther distance can cause centroid shifts at 1–2 mas level

Centroid of a core-jet morphology

Direction of the centroid change after a flare

Consequences of the optical jet interpretation for VLBI/Gaia offsets

- 1. Astrometry:
 - 1.1. **VLBI** and **Gaia** positions cannot be reconciled
 - 1.2. Gaia position accuracy cannot borrowed for radio applications
 - 1.3. A jitter in Gaia position is predicted
- 2. Astrophysics:
 - 2.1. Joint analysis of \mathcal{O}_j and Gaia time series will allow 2.1.1. pin-point the region where flares occur
 - 2.1.2. estimate effective size of optic jet and its relative flux
 - 2.2. \mathcal{O}_j will correlate with color
 - 2.3. AGN optical image in original polarization wrt jet direction will have an offset

Direction of VLBI and Gaia proper motions

Only proper motions greater 4σ are accounted

Median proper motions:

Gaia: 1.2 mas/yr VLBI: 0.02 mas/yr

Dependence of Gaia proper motion direction on χ^2/ndf

Only sources with $\sigma_{\bar{\psi}} < 0.3$ rad and arc-lengths < 2.5 mas are accounted

 χ^2/ndf is a measure of non-linearity of AGN motion

Stronger non-linearity is associated with proper motion along the jet direction.

2D Ψ -angle/VG distance distribution

2D Ψ -angle/redshift and Ψ -angle/color distribution

2D Ψ -angle/color distribution for different AGN types

Conclusions:

- The main reason of VLBI/Gaia is a presence of optical jets
- Prediction that the share of outliers will grow has been confirmed
- Predicted AGN position jitter has been indirectly confirmed
- VLBI/Gaia offsets allow to discriminate different types of AGNs
- Time series VLBI/Gaia offsets will allow pin-point where flare occur
- VLBI/Gaia offset is a new rich observable for AGN physics

Future work:

- Improve VLBI position accuracy down to 0.2 mas level
- Improve VLBI images to determine jet direction
- Launch spectra-polarimetry observation program
- Correlate Ψ angles with SED at different wavelengths