Network Earth Rotation Service

Leonid Petrov Christian Bizouard

ADNET Systems Inc/NASA GSFC

Paris Observatory, France

IERS DB 2017

Earth rotation business has four pillars:

- Theory
- Observations
- Data analyses
- Delivery to customers

Delivery to customers is the weakest point.

Past and present:

1895–1990s Printed bulletins are sent by surface mail1990s–2016 Bulletins are put on the ftp

- UTC service: NTP protocol. Seamless client/server interaction.
- Internet services as a tool for distribution of Earth science data: data + access software = long URL
- Internet of things: interaction of Internet services.

NTP client provides UTC function: time_t time(time_t *t) and command line interface command: date

Can we make a similar tool that provides UT1? Can we extend it to the Earth Rotation matrix?

To make rotating the Earth so simple, that even kids can do that

To provide rotation matrix for the past, present, and near future.

Objectives:

NTP: UTC time_t time (time_t t); NERS: UT1 ners_get_eop (time_t t ...); EOPs Internet service

- 1. Short-term EOP forecast (1–5 days);
- 2. Long-term EOP prediction (5–300 days);

3. Delivery.

Short-term prediction is needed for real-time applications.

Current status: UT1 and polar motion have 1 day latency at the worst case

EOP forecast is required only for short interval (1–3 days)

Long-term prediction is needed only as a hot backup

- 1. Compute the AAM time series
 - Extract state of the atmosphere from NASA GEOS-FP model
 - \bullet use GEOS-FP assimilation and forecast up to 72^h
 - expand state of the atmosphere to 4D B-spline, upgrid to $1\times 1~{\rm km},$ and integrate;
- 2. Expand the UT1 and polar motion into B-spline basis; assimilate using EOP estimates and AAM
- 3. Constraint to C04 series
- 4. Quarterly VLBI solutions for harmonic expansion of EOP variations

- 1. B-spline coefficients for IERS C04
- 2. B-spline coefficients for assimilation + forecast
- 3. B-spline coefficients for long-term prediction
- 4. Coefficients of the recent harmonic expansion
- 5. Auxiliary information

NERS machinery:

- Ingest of NASA GMAO numerical weather models (*every hour*)
 - Extraction of datasets
 - Computation of the state of the atmosphere
 - Expansion of the state of the atmosphere in 3D B-splines
 - Computation of the AAM
- Ingest of EOP time series (*every hour*)
 - Reformatting the EOP time series
 - Computation of the EOP forecast up to $46-60^h$ in the future
- Running NERS client (*continuously*)
 - Refreshing EOP forecast (every 20 minutes)
 - Serving requests for EOP

NERS User interface:

There are three levels of interface

• <u>Level 1</u>:

earthrotation.net/eop online.html

You see what you get.

Network Earth Rotation Service

Web interface

Disadvantage:

Usually, you need to export the EOPs into a code that performs some computation.

TAI Date:		? Format: YYYY.MM.DD_hh:mm:ss.sss or Now
Parameter	UTC minus TAI	• ?
	Submit	

Acknowledgment

This project is supported by NASA Earth Surface & Interior program, grant NNX15AC10G.

Available range: [1976.01.01-00:00:00.0, 2016.07.01-09:01:12.0]

Back to the Network Earth Rotation Service This page was prepared by Leonid Petrov (Leonid.Petrov@lpetrov.net)

Last update: 2016.06.28_11:34:23

IERS DB 2017

• Level 2: Internet service

An Internet service is a request to a HTTP server with parameters. The server returns the answer upon receiving the request.

Example:

wget -q -O -

'http://earthrotation.net/cgi-bin/eop_online.py?req_date=now¶m=utcmtai'

Server:	earthrotation.net		
Service:	cgi-bin/eop_online.py		
Parameter	req_date	value:	now
Parameter	param	value:	utcmtai

Advantage: you can include calls to an Internet service in your program. **Disadvantage:** Internet service is rather slow. If a given server is down, your application will fail.

- Level 3: client library
 - Download and install ners client library
 - Insert in your code three calls:

ners_init (config_file, ners, time_tai_start, time_tai_stop, iuer)
ners_get_eop (ners, time_tai, cpar, m_par, l_par, pars, iuer)
ners_quit (code, ners)

cpar may be either a EOP, or rotation matrix and its time derivatives.

time_tai may be in a range from 1976.01.01 through 48-60 hours in the future.

The client library downloads the EOP forecasts, keeps the local copy, maintains a buffer in memory, checks the forecast age, and performs calculations.

Advantage: very fast, efficient, and robust. Disadvantage: requires a little bit programming.

Command line interface:

/tmp> date
Tue Jun 28 23:28:04 EDT 2016
/tmp> ut1mtai
-36.210602
/tmp> ners_eop -p xpol -t 2016.07.01_00:43:18.192
TAI: 2016.07.01-00:43:18.191 EOP: 7.425805576848D-07
/tmp> ners_eop -p mat

0.86133528689840511 -0.50803500927422374 -1.3974603327308885E-003 0.50803442782134745 0.86133641927649118 -7.7004947183124614E-004 1.5948955696387420E-003 -4.6687177796133145E-005 0.99999872706340454

/tmp>

Comparison of past EOP forecasts to the current moment against modern C04 over the 1.5 year interval [2016.05.12, 2017.11.26]:

RMS of the differences of old NERS forecasts minus new C04:Axes 1,2 (polar motion)**1.1 nrad** (7 mm)Axis 3 (UT1 angle)**2.5 nrad** (16 mm)

This is the NERS accuracy for a current moment prediction

Accuracy in this context is an agreement with C04 based on 24 hour VLBI and final GNSS solutions.

- The NERS is a step forward towards
 - 1. short-term EOP forecast;
 - 2. dissemination results in a modern form
- The NERS covers
 - Past: [1976.0, 30^d] identical to IERS C04
 - Present: $[30^d, -2^d]$ best prediction of IERS C04
 - Future: $[-2^d, -180^d]$ coarse prediction
- The NERS is a matured service
- The NERS project is supported by NASA and Paris Observatory

The NERS became operational 1.5 years ago

Time came to let the NERS in the wild

Goals of the pilot:

- collect user comments
- make adjustments in accordance with user comments
- prepare outreach material
- prepare a progress report to the next IERS DB meeting
- the IERS DB decides either to make it official product or extend as a pilot phase for a next year
- finally make it the official IERS product <u>in addition</u> to other products after considering all comments and making requested changes

