

Radio astrometry in the post-Gaia epoch

Leonid Petrov ADNET Systems Inc

- 1. Recent VLBI surveys
- 2. Present state of absolute radio astrometry: the Radio Fundamental Catalogue
- 3. What did we learn from VLBI/Gaia comparison?
- 4. Where do we go?

Observing campaigns

589 dedicated observing sessions. Approximately 1 year on-source time.10 Pb raw data, 64 Tb visibility data.

Summary: Major geodesy/astrometry programs

	Dur (h)	C		C X		X/S or X/C	
VCS9	530	5680 (10	766)	5086	(10766)	5021	(10766)
VCS8	48	924 (1	.386)	878	(1386)	871	(1386)
VCS7	72	811 (1	436)	754	(1436)	750	(1436)
V2M	654			1865	(2702)		
FAPS*	224			699	(898)		
VEPS*	334			756	(3628)		
LCS	334			1347	(1742)		
VCS-ii	246			2586	(2596)	2549	(2596)
VCS1-6	588			3696	(4133)	3497	(3800)
RDV*	3,720			1424	(1462)	1422	(1462)
VIPS	176	857 (858)				
VIPS+	48	193 (193)				
NPCS	72			133	(521)	177	(521)
BESSEL	193			439	(1967)		
OBRS	240			400	(411)	373	(411)
IVS	134,000					1067	(1181)
Total		8376 (14	-801)	13497	(26477)	10653	(18328)

* — ongoing.

The total number of observed sources is shown in brackets.

Grand total: 14768 (26769) sources.

Statistics are computed on 2017.09.01

Participating VLBI networks

What is new in modern surveys:

- Gradual increase of field of view from 2'' to 5' (whole beam)
- Gradual lifting selection bias towards flat spectrum
- Wider bandwidth. Detection limit: 6–20 mJy
- Automatic scheduling
- (semi)Automatic imaging
- Including X/C, K-only, X-only, C-only, S-only data

Goals of surveys:

- Full sky surveys with the goal of reaching completeness at a given flux denisity limit
- Full-in surveys for improvement of the spacial coverage
- Observations of a dedicated zone
 - ecliptic plane
 - Galactic plane
 - polar cap
 - southern zone
- Observations of a dedicated class of sources (γ -ray loud)
- Follow-up surveys (VCS-i-i, VEPS-F)

II. State of fundamental radio astrometry on 2017.09.01

The Radio Fundamental Catalogue

sources: 14768

percentile of accuracy:

20%	< 0.30	mas
50% (median)	< 0.90	mas
80%	< 2.5	mas
90%	< 5.2	mas
94.8%	< 10	mas

Flux density @ X-band: [0.003, 22] Jy, median: 101 mJy

Used type of observations:

Number of observing sessions

Dual-band:	55%	1	45%
8 GHz	33%	1–2	77%
5 GHz	10%	1–5	90%
22 GHz	2%	10+	8%
2 GHz	1%	100 +	3%

56,147 images in FITS format of 9304 compact radio sources

RFC input observing campaigns:

IVS	CRF-1	FAPS	LCS	
143	0111-1		200	
RDV		VIPS	VEPS	
VCS1	ICRF-2	2 VIPS++	V2M	
VCS2		NPCS	VCS7	
VCS3	VCS-II	BESSEL	VCS8	RFC
VCS4		OBRS	VCS9	
VCS5	IC	OBRS-2 CRF-3		
VCS6		FIRST Followup		

Sky distribution: 14768 objects RFC 2017b

Completeness of the RFC

 $\log N$ versus $\log S$ diagram. $S_{\rm corr}$ @ 8 GHz at baselines 200–1000 km

Source sky distribution (complete subsample of 3500 objects)

RFC 2017b F(X) > 150 mJy

Comparison with Pan-STARRS catalogue

10202 RFC/PS matches

Flt	share	compl
		mag
g	71%	22.0
r	76%	21.8
i	78%	21.6
Z	78%	21.0
У	76%	21.0

Slide 14(40)

Number of matches

$\gamma ext{-ray}$	Fermi:	15%
X-ray	Chandra	3%
infra-red	WISE:	74%
infra-red	2MASS:	36% (point sources)
infra-red	2MASS:	11% (extended sources)
optic	Gaia:	53%
optic	PanSTARRS:	69% (78%)
optic	known redshifts	42%
radio	NVSS	91% (99.8%)
radio	TGSS	72% (76%)

III. VLBI/Gaia comparison

Data

VLBI Radio Fundamental Catalogue (**14,768 sources**) on 2017.09.01 and Gaia DR1 ($1.14 \cdot 10^9$ objects)

Green: 7,669 VLBI/Gaia matches P < 0.0002**Blue: VLBI sources without** Gaia matches

VLBI and *Gaia* position uncertainties

Median error: VLBI RFC: 0.5 mas

Median error: Gaia DR1: 2.2 mas

Distribution of VLBI/*Gaia* arc lengths

There are **486 outliers** (7%) at significance level 99%.

Outliers range: 1–400 mas (median: 10 mas).

Distribution of VLBI/*Gaia* position offset angles

Main finding: no preference at 0° , 180° (VLBI declination errors) No deviation from the isotropy. **Distribution of AGN jet directions in the VLBI**/*Gaia* sample

No deviation from the isotropy

Distribution of VLBI/*Gaia* position offset angles with respect to jet direction

VLBI/Gaia offsets prefer directions along the jet!!

The pattern can be explained only by core-jet morphology

VLBI/*Gaia* differences: explanation

Facts:

- There are 7% sources with significant VLBI/Gaia offsets (1–400 mas).
- While position angles of VLBI/*Gaia* offsets and jet position angles, taken separately, are distributed uniformly, their difference has significant peaks at 0 and 180 degrees.

To explain the pattern, systematic shifts VLBI/Gaia at 1–2 mas level are required.

Possible explanations:

- Blame radio: core-shift;
- Blame radio: the contribution of source structure to VLBI positions;
- Blame *Gaia*: the contribution of optical jets or the accretion disks to centroid positions.

Core-shift

• Core is the optically thick part of the jet;

- Core centroid is shifted with respect to the jet base;
- The shift is frequency dependent;
- Results of core-shift measurements:
 - Contribution to 8 GHz positions: $~\sim\!0.2$ mas;
 - Contribution to dual-band positions: 0.02-0.05 mas.
- Conclusion: the effect is too small

Contribution of source structure to VLBI position

- VLBI does not measure position of the centroid
- Source structure contribution depends on image Fourier transform
- The most compact image component has the greatest impact on position
- Examples:

 Test VLBI experiment processed with source structure contribution applied: Median VLBI position bias: 0.06 mas Median image centroid offset: 0.25 mas
 Conclusion: the effect is too small

Contribution of optical structure

There are over 20 known optical jets with sizes 0.5-20''

At z=0.07, visible optical jet of J1145+1936 would shift centroid at 5 mas

At z=0.3, visible optical jet of J1223+1230 would shift centroid at 1.2 mas Conclusion: known optical jets at farther distance can cause centroid shifts at 1–2 mas level

Optical jets interpretation

Dilemma:

- large optical jet that we see, do not affect *Gaia*.
- small optical jet that we do not see, affect *Gaia*.
- What are observational consequences?
- Image centroid and, therefore VLBI/Gaia offsets will change due to
 - 1. optical variability and
 - 2. jet kinematics.

Jet kinematics

Slide 28(40)

Centroid of a core-jet morphology

Slide 29(40)

Direction of the centroid change after a flare

Correlation of the centroid wander and light curve

1. Two component stationary model

$$C_f(t) = F(0) \frac{\mathcal{O}_j(t) - \mathcal{O}_j(0)}{F(t) - F(0)} + \mathcal{O}_j(t)$$

$$F_f(t) = F(0) \frac{\mathcal{O}_j(0)}{C_x(t)}$$

We can locate the position of the flaring component and its flux density; Stability of $C_x(t)$ provides a stationarity test.

Correlation of the centroid wander and light curve

2. A general non-stationary model

$$\mathcal{O}_{j}(t) = \sum_{i} \frac{v(t - t_{0i}) F_{j}(t) + C_{i}(t_{0i}) F_{j}(t_{0i})}{F_{c}(t) + \sum_{i} F_{j}(t)}$$

$$F_{t}(t) = F_{c}(t) + \sum_{i} F_{j}(t)$$

$$F_{j}(t) = 0 \quad \forall t < t_{0i}$$

Not solvable without a use of addition information

3. Two-component non-stationary case

$$F_j(t) = \frac{\mathcal{O}_j(t) F_t(t) - \mathcal{O}_j(t_b) F_t(t_b)}{v (t - t_b)} + F_j(t_b)$$

$$F_c(t) = F_t(t) - F_j(t_b)$$

$$d_j(t) = d(t_b) + v(t - t_b)$$

If ejection start time t_b and component speed v are known, we can

- locate the **position** of the jet component
- determine its **flux density** as function of time
- determine **flux density** of the core as a function of time

AGN position jitter

A consequence of VLBI/Gaia offset optical jet interpretation is prediction of AGN jitter in Gaia time series at a level of several milliarcseconds

A jitter is

- a) stochastic;
- b) confined to a small region;
- c) correlated with light curve;
- d) occurs primarily along the jet;
- e) mean with respect to VLBI position is not zero.

Naive model:an AGNs is point-like and stable;Realistic model:AGN has variable structure and it has jitter.

In VLBI world we got used to that.

How to live with AGN position jitter?

Two cases:

• Radio-loud AGNs:

weak remedy: determine VLBI jet direction, $\mathcal{O}_{j}(t)$, $\mathcal{O}_{t}(t)$; strong remedy: centroid modeling, determination of the invariant core;

• AGNs without detected parsec-scale emission: determination of jet direction for position jitter;

Good news: position jitter converges with time to some (biased) mean position.

IV. Consequences to fundamental astronomy

- We still do not know unmovable sources (AGNs are not);
- There is a limit beyond that positions from technique A and B are not comparable;
- For VLBI/*Gaia* this limit is 1–2 mas;
- Even for VLA/VLBA positions may be different;
- The fundamental coordinate systems from different techniques have to coexist;
- Impossible to say which is the best: *Gaia*-DR99, or RFC, or ICRF-2100;
- Future comparison of VLBI/optic will focus on astrophysics interpretation.

Wide impact of *Gaia* on fundamental astronomy

- VLBI astrometry for study of Galaxy kinematics is on a brink of extinction:
 - VLBI stellar parallax determination GONE!
 - VLBI maser parallax/proper motion determination GONE!
- Ground astrometry of Galactic plane objects is limited to
 - objects weaker 21 mag (telescope larger 2m);
 - objects not visible in optical range, like pulsars, masers
- VLBI/Gaia AGN program is emerging;

Radio absolute astrometry: where to go

- Field of "extensive astrometry":
 - ecliptic plane (50 and 30 mJy);
 - unassociated sources (f.e. Fermi)

Expected growth rate: 200–500 new sources per year.

• Extensive era of radio astrometry is followed by with intensive era

The areas that need nanorad level accuracy:

- 1. $\mathcal{O}_j\text{, }\mathcal{O}_t$ observables;
- 2. space navigation;
- 3. pulsar timing/VLBI differences.

Goals:

- improve positions of $\sim\!9000~{\rm VLBI}/{\it Gaia}$ matches down to 0.2–0.3 mas.
- derive source images, apply source structure correction.
- determine jet direction
- Derive images/ determine flux densities at high frequencies (22–129 GHz).

Absolute astrometry without imaging is junk in post-Gaia era.

Future observing programs

• improve VLBI positions of ~ 6000 matches at $\delta > -40^{\circ}$ and get jet directions. Goal: 0.2 mas. Status: pending.

- improve VLBI positions of 758 matches at $\delta < -40^{\circ}$, get jet directions. Goal: 0.3 mas. Status: **ongoing**
- Imaging peculiar VLBI/Gaia matches with ROBO AO. Status: ongoing
- Imaging VLBI/Gaia matches with large offsets with HST. Status: pending
- Getting spectra of peculiar VLBI/Gaia matches. Status: pilot
- Specta-polarimetric observations of VLBI/Gaia matches. Status: pending
- Redshift determination. Status: discussed.
- Ecliptic plane survey. Status: ongoing.

Summary:

- VLBI/Gaia residuals have systematic caused by core-jet morphology;
- VLBI position is related to the most compact detail, an AGN core;
- *Gaia* position is related to the image centroid within the PSF;
- The most plausible explanation: optical jet at scales 1–200 mas;
- Consequence of the optical jet presence: source position jitter;
- Position jitter + light curve = optical resolution at mas scale;
- VLBI + $Gaia \longrightarrow$ we can determine the region of optical flares its kinematics and its flux density.

 References:
 arxiv.org/abs 1611.02630, 1611.02632, 1704.07365

 RFC preview:
 http://astrogeo.org/rfc