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1. Recent VLBI surveys

2. Present state of absolute radio astrometry:
the Radio Fundamental Catalogue

3. What did we learn from VLBI/Gaia comparison?

4. Where do we go?
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Observing campaigns

The number of sources in the cumulative absolute astromerty catalogue
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589 dedicated observing sessions. Approximately 1 year on-source time.
10 Pb raw data, 64 Tb visibility data.
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Summary: Major geodesy/astrometry programs

Dur (h) C X X/S or X/C
VCS9 530 | 5680 (10766) | 5086 (10766) | 5021 (10766)
VCS8 48 | 924 (1386) | 878 (1386) | 871 (1386)
VCS7 72 | 811 (1436) 754 (1436) 750 (1436)
V2M 654 1865 (2702)
FAPS* 224 699  (898)
VEPS* 334 756 (3628)
LCS 334 1347 (1742)
VCS-i 246 2586 (2596) | 2549 (2596)
VCS1-6 588 3696 (4133) | 3497 (3800)
RDV* 3,720 1424 (1462) | 1422 (1462)
VIPS 176 | 857  (858)
VIPS+ 48 | 193  (193)
NPCS 72 133 (521) 177 (521)
BESSEL 103 439 (1967)
OBRS 240 400 (411) | 373 (411)
IVS 134,000 1067 (1181)
Total 8376 (14801) | 13497 (26477) | 10653 (18328)

* — ongoing.

The total number of observed sources is shown in brackets.

Grand total: 14768 (26769) sources.

Statistics are computed on 2017.09.01
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Participating VLBI networks

m VS 1%
Bl CVN 2%
B LBA 10%
l VLBA 86%
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What is new in modern surveys:

e Gradual increase of field of view from 2" to 5" (whole
beam)

e Gradual lifting selection bias towards flat spectrum
e Wider bandwidth. Detection limit: 6—20 mJy

e Automatic scheduling

e (semi)Automatic imaging

e Including X/C, K-only, X-only, C-only, S-only data
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Goals of surveys:

e Full sky surveys with the goal of reaching completeness at a
given flux denisity limit

e Full-in surveys for improvement of the spacial coverage

e Observations of a dedicated zone
— ecliptic plane
— Galactic plane

— polar cap
— southern zone

e Observations of a dedicated class of sources (v-ray loud)

e Follow-up surveys (VCS-i-i, VEPS-F)
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Il. State of fundamental radio astrometry on 2017.09.01
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The Radio Fundamental Catalogue
# sources: 14768

percentile of accuracy:

20% < 0.30 mas
50% (median) < 0.90 mas
80% < 2.5 mas
90% < 5.2 mas
94.8% < 10 mas

Flux density @ X-band: [0.003, 22] Jy, median: 101 mJy

Used type of observations: Number of observing sessions
Dual-band:  55% 1 45%
8 GHz 33% 1-2 7%
5 GHz 10% 1-5 90%
22 GHz 2% 10+ 8%
2 GHz 1% 100+ 3%

56,147 images in FITS format of 9304 compact radio sources
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RFC input observing campaigns:
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Sky distribution: 14768 objects
RFC 2017b
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Completeness of the RFC

log N versus log S diagram. S.orr @ 8 GHz at baselines 200-1000 km
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Source sky distribution (complete subsample of 3500 objects)

RFC2017b F(X)> 150 mJy
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Comparison with Pan-STARRS catalogue
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Number of matches

y-ray
X-ray
infra-red
infra-red
infra-red
optic
optic
optic
radio

radio

Fermi:

Chandra

WISE:

2MASS:
2MASS:

Gazia:
PanSTARRS:
known redshifts
NVSS

TGSS

15%

3%

74%

36% (point sources)
11% (extended sources)
53%

69% (78%)

42%

91% (99.8%)

72% (76%)
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111. VLBI/Gaia comparison
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Data

VLBI Radio Fundamental Catalogue (14,768 sources) on 2017.09.01 and
Gaia DR1 (1.14 - 10 objects)

Green: 7,669 VLBI/Gaia matches P < 0.0002

Blue: VLBI sources without Gaia matches
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VLBI and Gaia position uncertainties
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Distribution of VLBI/Gaia arc lengths

Normalized frequency

Gaia quasar solution;
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There are 486 outliers (7%) at significance level 99%.

Outliers range: 1-400 mas (median: 10 mas).
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Distribution of VLBI/Guaia position offset angles
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Main finding: no preference at 0°,180° (VLBI declination errors)
No deviation from the isotropy.
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Distribution of AGN jet directions in the VLBI/ Gaia sample
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Distribution of VLBI/Gaia position offset angles
with respect to jet direction
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VLBI/Gaia offsets prefer directions along the jet!!

The pattern can be explained only by core-jet morphology
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VLBI/ Gaia differences: explanation

Facts:

e There are 7% sources with significant VLBI/Gaia offsets (1-400 mas).

e While position angles of VLBI/Gaia offsets and jet position angles, taken
separately, are distributed uniformly, their difference has significant peaks
at 0 and 180 degrees.

To explain the pattern, systematic shifts VLBI/ Gaia at 1-2 mas level are
required.

Possible explanations:

e Blame radio: core-shift;
e Blame radio: the contribution of source structure to VLBI positions;

e Blame Guaia: the contribution of optical jets or the accretion disks to
centroid positions.
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Core-shift

e Core is the optically thick part of the jet;
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Sokolovsky et al. 2011
e Core centroid is shifted with respect to the jet base;

e The shift is frequency dependent;

e Results of core-shift measurements:
— Contribution to 8 GHz positions: ~0.2 mas;
— Contribution to dual-band positions: 0.02—0.05 mas.

Conclusion: the effect is too small
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Contribution of source structure to VLBI position

VLBI does not measure position of the centroid
Source structure contribution depends on image Fourier transform
The most compact image component has the greatest impact on position

Examples:
2016.09.26 J1145+1936 e 5.3 GHz 2016.09.26 Jo839+1802 I'req:

—

@ - VLBI position
] @ -Image centroid .
* - Gaia position

@ - VLBI position
' @ - Image centroid
?1 % - Gaia position
2| 0 - 0

Declination (mas) relative to +19:36:22.741
0
o
T

Declination (mas) relative to +18:02:47.143
0
1

T T T | T T T T T T T
10 5 0 -5 -10 8 6 4 2 0 -2 -4 -6 -8
Right ascension (mas) relative to 11:45:05.0090 Right ascension (mas) relative to 08:39:30.7214
Peak_lev= 0.092 Jy/beam Rms_noise= 0.06 mJy/beam Peak_lev= 0.057 Jy/beam Rms_noise= 0.06 mJy/beam

Levels: 0.3, 0.6, 1, 2, 5, 10, 19, 39, 78 mly/beam Levels: 0.3, 0.6, 1, 2, 5, 10, 19, 39 mlJy/beam

e Test VLBI experiment processed with source structure contribution applied:
Median VLBI position bias: 0.06 mas

Median image centroid offset: 0.25 mas

Conclusion: the effect is too small
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Contribution of optical structure

There are over 20 known optical jets with sizes 0.5—20"

J1145+1936 J1223+1230
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At z=0.07, visible optical jet of J114541936 would shift centroid at 5 mas
At z=0.3, visible optical jet of J1223+1230 would shift centroid at 1.2 mas

Conclusion: known optical jets at farther distance can
cause centroid shifts at 1-2 mas level
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Optical jets interpretation

Dilemma: e large optical jet that we see, do not affect Gaza.
e small optical jet that we do not see, affect Gaia.
What are observational consequences?

Image centroid and, therefore VLBI/ Gaia offsets will change due to

1. optical variability and

2. jet kinematics.
1959+65O light curve
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Jet kinematics
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Centroid of a core-jet morphology

Ocore F core 4 Ojet Ejet 4 Cstars F. stars
Fcore + F}et + Fstars Fcore + Ejet + Fstars Fcore + F}et + Fstars

Cimage -
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Direction of the centroid change after a flare

Oj+i
e O 0O 0 Flare happened at the jet
A B ) Jet
Oj-i
o O—0 O— Flare happened at the accretion disk
A B ) Jet
0j+d

R O— : Flare happened at the core or accretion disk

Oj-d
e OO O Flare happened at the core and the jet
A B ) Jet
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Correlation of the centroid wander and light curve

1. Two component stationary model

Crt) = FO) AP — o + Ot
Frlt) = FO) L)

We can locate the position of the flaring component and its flux density;

Stability of C.(t) provides a stationarity test.
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Correlation of the centroid wander and light curve
2. A general non-stationary model
v(t — toi) F;(t) + Ciltos) F(tos)
O. —
i Z Fo(t)+ ) F(t)
Fy(t) = F.(t)+Y Fit) Z

Fj(t) = 0 \V/t<t0i
Not solvable without a use of addition information

3. Two-component non-stationary case
O;(t) Fi(t) — O5(ts) Fi(ts)

F](t) = U(t—tb) ‘|'F](tb)
Ft) = Flt)— Fyt)
() = d(ty) +o(t—t,)

If ejection start time ¢, and component speed v are known, we can

e locate the position of the jet component
e determine its flux density as function of time

e determine flux density of the core as a function of time
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AGN position jitter

A consequence of VLBI/Gaia offset optical jet interpretation is
prediction of AGN jitter in Gata time series at a level of several milliarcseconds

A jitter is
a) stochastic;
b) confined to a small region;
c) correlated with light curve;
d) occurs primarily along the jet;
e) mean with respect to VLBI position is not zero.
Naive model: an AGNs is point-like and stable;

Realistic model: AGN has variable structure and it has jitter.

In VLBI world we got used to that.
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How to live with AGN position jitter?

Two cases:

e Radio-loud AGNs:
weak remedy: determine VLBI jet direction, O;(t), Oy(?);
strong remedy: centroid modeling, determination of the

Invariant core;
e AGNs without detected parsec-scale emission:

determination of jet direction for position jitter;

Good news: position jitter converges with time to some (biased)
mean position.
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IV. Consequences to fundamental astronomy
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e We still do not know unmovable sources (AGNs are not);

e There is a limit beyond that positions from technique A and
B are not comparable;

e For VLBI/Gaia this limit is 1-2 mas;
e Even for VLA/VLBA positions may be different;

e The fundamental coordinate systems from different techniques
have to coexist;

e Impossible to say which is the best: Gaia-DR99, or RFC, or
ICRF-2100;

e Future comparison of VLBI/optic will focus on astrophysics
Interpretation.
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Wide impact of Gaia on fundamental astronomy

e VLBI astrometry for study of Galaxy kinematics is on a brink
of extinction:

— VLBI stellar parallax determination — GONE!
— VLBI maser parallax/proper motion determination — GONE!

e Ground astrometry of Galactic plane objects is limited to

— objects weaker 21 mag (telescope larger 2m);
— objects not visible in optical range, like pulsars, masers

e VLBI/Gaia AGN program is emerging;
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Radio absolute astrometry: where to go

e Field of “extensive astrometry”:
— ecliptic plane (50 and 30 mJy);
— unassociated sources (f.e. Fermi)
Expected growth rate: 200-500 new sources per year.

e Extensive era of radio astrometry is followed by with intensive era

The areas that need nanorad level accuracy:
1. O;, O observables;
2. space navigation;
3. pulsar timing/VLBI differences.
Goals:
— improve positions of ~9000 VLBI/Gaia matches down
to 0.2-0.3 mas.
— derive source images, apply source structure correction.
— determine jet direction

e Derive images/ determine flux densities at high frequencies (22-129 GHz).

Absolute astrometry without imaging is junk in post-Gaia era.
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Future observing programs

e improve VLBI positions of ~ 6000 matches at 06 > —40° and get jet
directions. Goal: 0.2 mas. Status: pending.
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e improve VLBI positions of 758 matches at 0 < —40°, get jet directions.
Goal: 0.3 mas. Status: ongoing

e Imaging peculiar VLBI/ Gaia matches with ROBO AO. Status: ongoing
e Imaging VLBI/Gaia matches with large offsets with HST. Status: pending
e Getting spectra of peculiar VLBI/ Gaia matches. Status: pilot

e Specta-polarimetric observations of VLBI/Gaia matches. Status: pending
e Redshift determination. Status: discussed.

e Ecliptic plane survey. Status: ongoing.
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Summary:

e VLBI/Gaia residuals have systematic caused by core-jet
morphology;

e VLBI position is related to the most compact detail, an AGN
core;

e (aia position is related to the image centroid within the PSF;

e [he most plausible explanation: optical jet at scales
1-200 mas;

e Consequence of the optical jet presence: source position jitter;
e Position jitter + light curve = optical resolution at mas scale;

e VLBl 4+ Gaia — we can determine the region of optical
flares its kinematics and its flux density.

References: arxiv.org/abs 1611.02630, 1611.02632, 1704.07365
RFC preview: http://astrogeo.org/rfc
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