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I. State of fundamental radio astrometry on 2021.06.24:

# sources detected: 19514 # sources observed: 34003

percentiles of accuracy:

20% < 0.18 mas
26% < 0.30 mas
50% (median) < 1.00 mas
80% < 2.9 mas
90% < 6.0 mas
94% < 10 mas

Flux density @ X-band: [0.003, 22] Jy, median: 55 mJy

Observed band:

22 GHz 9%
8 GHz 92%
5 GHz 70%
2 GHz 33%
Dual-band: 81%

Number of observing sessions per source

1 64%
1–2 70%
1–5 91%
10+ 5%
100+ 2%
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Observing campaigns
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Reanalysis

61 dedicated observing campaigns; 909 segments; 1.5 year observing time.
12 Pb raw data, 70 Tb visibility data.
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Observed objects

19495 Active galaxy nuclea

19 radio stars
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Images are available for 17,411 sources (89%)

In total, 110943 images are available at http://astrogeo.org/vlbi images
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Technology of VLBI surveys

• Setting a goal of the survey

• Selection of a (wide) pool of candidates;

• Computing the probability of detection of each source;

• Maximization of the target function.

• Scheduling

• Several iterations of visibility analysis / astrometric data analysis

• Source imaging
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Goals of astrometric surveys

• To build a dense grid of phase calibrators

• To study a population of bright radio loud AGNs

• To associate a given population of radio sources with AGNs

• To improve position of sources observed at other wavelengths

• To investigate systematic differences with results of space astrometry
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Comparison with Pan-STARRS catalogue

11618 RFC/PS matches

Flt share compl
mag

g 65% 22.0
r 67% 21.8
i 68% 21.6
z 67% 21.0
y 65% 21.0
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Number of matches

γ-ray Fermi: 14%

X-ray ROSAT 19%

UV Galex 32%

optic Gaia: 62%

optic PanSTARRS: 79%

infra-red WISE: 77%
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Completeness of the RFC

logN versus logS diagram. Scorr @ 8 GHz at baselines 200–1000 km

190 mJy

250 mJy 100%
200 mJy 96%
190 mJy 95%
150 mJy 86%
100 mJy 75%

Full sample at 190 mJy has 3200 objects, 16% of the RFC.
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Lon N / Log S zoomed
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ICRF and RFC

1951445883414 3585

61 camp
RFC

7 camp8 camp
RFC

7 camp
ICRF

10 camp
ICRF

2008 2021
ICRF3 is a subset of RFC (23% sources)

Slide 14(41)



VLBI Radio Fundamental Catalogue (19,514 sources) on 2021.06.24 and
Gaia DR3 (1.81 · 109 objects)

Green: 12,009 VLBI/Gaia matches P < 0.0002

Blue: VLBI sources without Gaia matches
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Median position error:

VLBI: 0.83 mas
Gaia: 0.30 mas

VLBI has lost its superiority to Gaia!
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The distribution of normalized VLBI/Gaia arc-lengths over 9465 AGNs

1/6 matched sources are outliers: a/σa > 4

What is their nature?
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Distribution of VLBI/Gaia position offset angles

Main finding: no preference at 0◦, 180◦ (VLBI declination errors)
No deviation from the isotropy.
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How the AGNs look like at mas scale?

Generic property: core-jet morphology:

• Images are available for 89% sources (the number will increase)

• Jets are reliably determined for 25% sources (will be improved)

AGNs are intrinsically asymmetric sources!
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Distribution of AGN jet directions in the VLBI/Gaia sample

Jet position angle (deg)

No deviation from the isotropy
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Distribution of VLBI/Gaia position offset angles
with respect to jet direction
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Contribution of source structure to VLBI position
• VLBI does not measure position of the centroid

• Source structure contribution depends on image Fourier transform

• The most compact image component has the greatest impact on position

• Examples:

●
● ●

●

• Test VLBI experiment processed with source structure contribution applied:
Median VLBI position bias: 0.06 mas
Median image centroid offset: 0.25 mas

Conclusion: the effect is too small
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Core-shift
• Core is the optically thick part of the jet;

• Core centroid is shifted with respect to the jet base;

• The shift is frequency dependent;

• Results of core-shift measurements:
– Contribution to 8 GHz positions: ∼0.2 mas;
– Contribution to dual-band positions: 0.02–0.05 mas.

Conclusion: the effect is too small
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Proposed explanation:

Presence of core-jet morphology in optical range at scales less
than Gaia PSF (200 mas)

Interferometer (VLBI) and a power detector (Gaia) have a fundamentally
different response to source structure.

• VLBI: Sensitive to the position of the most compact component

• Gaia: Sensitive to the position of the centroid

The differences Gaia minus VLBI provide offset of the centroid wrt jet base.
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Centroid of a core-jet morphology

✖

Ccore image jetC C
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Contribution of optical structure

There are over 20 known optical jets with sizes 0.5–20′′

At z=0.07, visible optical jet of J1145+1936 would shift centroid at 5 mas

At z=0.3, visible optical jet of J1223+1230 would shift centroid at 1.2 mas

Conclusion: known optical jets at farther distance can
cause centroid shifts at 1–2 mas level

Slide 26(41)



Impact of AGN variability

Image centroid and VLBI/Gaia offsets will change due to

1. optical variability and

2. jet kinematics.

20162014201220102008
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Jet kinematics

j

tO (t)

O (t)
J1829+4844 centroid 
evolution

Core ejects components,

they are moving,

fainting,

disappearing
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Direction of the centroid change after a flare

•
J

Oj+i

jetA B
Flare happened at the jet

•
J

Oj-i

jetA B
Flare happened at the accretion disk

•
J

Oj+d

jetA B
Flare happened at the core or the accretion disk

•
J

Oj-d

jetA B
Flare happened at the core or the jet
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Correlation of the centroid wander and light curve

• Two component stationary model

Cf(t) = F (0)
Oj(t)−Oj(0)

F (t)− F (0)
+Oj(t)

Ff(t) = F (0)
Oj(0)

Cx(t)

We can locate the position of the flaring component Cf(t) and
its flux density Ff(t);

Stability of Cx(t) provides a stationarity test.

• Two component stationary model

Solvable using jet kinematics from VLBI

A solution can by verified with spectropolarimetry!
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Consequences of the optical jet interpretation for
VLBI/Gaia offsets

Astrometry:

1. VLBI and Gaia positions cannot be reconciled

2. Gaia position accuracy cannot be used for radio applications

3. We predict a jitter in Gaia positions
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Prediction of AGN position jitter

A consequence of VLBI/Gaia offset interpretation is a prediction of AGN jitter
in Gaia time series at a level up to several milliarcseconds.

A jitter is

a) stochastic;

b) confined to a small region;

c) correlated with light curve;

d) occurs primarily along the jet;

e) mean value with respect to VLBI position is not zero;

f) first derivative (PM) is not zero.

Naive model: AGNs are point-like and stable;

Realistic model: AGNs have variable structure and unstable.
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Consequences of the optical jet interpretation for
VLBI/Gaia offsets

Astrophysics:

1. Joint analysis of VLBI/Gaia time series and optical light
curves will allow

1.1. pin-point the region where flares occur

1.2. estimate effective size of optic jet and its relative flux

2. VLBI/Gaia offsets will correlate with color

3. AGN optical image in orthogonal polarizations wrt jet direction

will have an offset

4. AGNs with large VLBI/Gaia will have higher fractional

polarization in optical range
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Directions of Gaia and VLBI proper motions

Ψ  angle (deg)

75 sourcesGaia 284 
sources

VLBI

_
Ψ   angle v

Only proper motions greater 4σ are accounted

Median proper motions:

Gaia: 1.2 mas/yr

VLBI: 0.02 mas/yr
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Dependence of Gaia proper motion direction on χ2/ndf

Only sources with σψ̄ < 0.3 rad and arc-lengths < 2.5 mas are accounted

χ2/ndf is a measure of non-linearity of AGN motion

Stronger non-linearity is associated with proper motion along the jet direction.
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2D Ψ-angle/VG distance distribution
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2D Ψ-angle/VG distance distribution
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2D Ψ-angle/redshift and Ψ-angle/color distribution
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2D Ψ-angle/color distribution for different AGN types
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Optical polarization favours sources with ψ = 0
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Summary

There were 61 dedicated absolute astrometry campaigns

Their analysis yielded a catalogue of 19,500 AGNs, 17,411 images and 5823 jet
directions.

Reach science emerged from disagreement of VLBI and Gaia source positions.

• The main reason of VLBI/Gaia offsets is a presence of optical jets

• Prediction that the share of outliers will grow has been confirmed

• Predicted AGN position jitter has been indirectly confirmed

• VLBI/Gaia offsets allow to discriminate sources with jet-dominated
emission from accretion-disk dominated

• VLBI/Gaia offsets allow to discriminate different types of AGNs
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