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I. Overview and current VLBI accuracy and goal

SGP System specifications and requirements (SGP TRM v4.2):

PRIT3.2 (Threshold Requirement EOP): Co-located global geodetic network
shall be capable of determining daily values of Earth Orientation Parameters
(Polar Motion, and UT1) with a precision better than 50 micro-arcseconds in
combination (daily)

PRIB3.2 (Baseline Requirement EOP): . . . with a precision better than
10 micro-arcseconds in combination (daily)

Current EOP accuracy: 40–60 µas
EOP accuracy goal: 10 µas

Current position accuracy: 2–3 mm hor, 7–8-mm vert
Position accuracy goal: 1 mm hor, 1 mm vert

Current long-term position stability: > 1 mm/yr
Long-term position stability goal: 0.1 mm/yr
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Three factors that affect VGOS accuracy:

• Atmospheric path delay

• Source structure

• Instrumental errors
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Why atmospheric errors dominate

• Evidence #1: seasonality in postfit residuals (VGOS)

• Evidence #2: seasonality in rms of zenith path delay derived from GMAO
numerical weather model Nature 7km Run

• Evidence #3: Elevation dependence in post-fit residuals

See backup slides
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Why source structure contribution is a significant error source

• Evidence #1: phase misclosures shows a pattern that can be reconstructed
using images

• Evidence #2: Source-based residual errors are consistent

• Evidence #3: Source-based residual errors may be mitigated when apply
τstr computed from source images

• Evidence #4: source structure has a secular change

See backup slides
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Why Instrumental errors are important

• Evidence #1: Unstable phase calibration.

• Evidence #2: Systematic source-independent phase misclosure

• Evidence #3: Systematic differences in group delays wrt phase delays

See backup slides
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Strategies in mitigation of errors in modeling atmospheric
path delay

The use of GMAO for

• simulation

• data reduction

• parameter estimation — the use of a priori full covariance

matrix for parameter estimation

• refined parameterization of path delay (f.e. using a slab model)

• establishing the most variable atmospheric layer

• advance stochastic modeling (f.e. SRIF)
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Strategies in mitigation the contribution of source structure

• antenna calibration

• imaging the sources

• source monitoring

• computation of source structure delay using images for data

reduction

• computation of correlated flux density delay using images for

scheduling
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Strategies in mitigation of instrumental errors

• Used advanced visibility analysis for computation of group

delay

• Characterization of instrumental error in special experiments:

– high SNR experiments

– short baseline experiments

– cluster-cluster experiments

• Fixing phase-cal hardware

• Improvement of phase stability

• Development of new generation phase calibration system
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II. Key performance parameters:

• Realism in prediction of group delay uncertainty

• Realism in prediction of data product uncertainty
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Benefits to the agency:

• An ability to realistically predict an experiment outcome saves money
because

– it allows to realistically assess ROI

– it allows to spend resources efficiently

• An ability to realistically predict an experiment outcome greatly enhances

– our ability to develop advanced data analysis strategy because it provides
a feedback

– our ability to evaluate scheduling strategies.
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III. Goals, objectives, and output of the development

Focal points of development

1. to reach realism in prediction of group delay uncertainty

What we are aiming at:

• Current state-of-the-art: 100–500% errors

• Excellent agreement: better than 15%

• Acceptable agreement 15–40%

• Agreement worse than 50%: failure

What needs to be done:

• regular monitoring for antenna characterization

• imaging of observed sources

• upgrade scheduling software

• upgrade parameter estimation software

• stay focused on reaching the goal
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2. to reach realism in prediction of data product accuracy

What we are aiming at:

• Current state-of-the-art: 50–250% errors

• Excellent agreement: better than 15%

• Acceptable agreement: 15–35%

• Agreement worse than 50%: failure

What needs to be done:

• characterization of systematic errors

• characterization of atmospheric errors through the use of NWM and
running special VLBI experiment

• development of advanced stochastic model of VLBI observables

• upgrade analysis software

• stay focused on reaching the goal
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IV. Outcomes of these activities

• Algorithms, programs, datasets that allows realistically predict the outcome
of a VLBI experiment or campaign

• Substantial mitigation of the impact of source structure on VLBI results

• Improvement in accuracy of VLBI results via incorporation of off-diagonal
terms in the a priori weight matrix

• Improvement in accuracy of VLBI results via deep optimization of schedules
based in solid foundation

• VLBI data products with realistic uncertainties
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V. Required resources

• Group of 3 researchers with strong programming skills working with the
VLBI Lead Scientist
– radioastronomer — source imaging and source monitoring
– physicist/atmospheric scientist — atmospheric turbulence theory and

models
– a scientific software developer

• A high-end server computer (40K-50K) and
a workstation for each researcher (8-10K each)

• Access to NASA HPC

• Resource for a domestic R&D VLBI program:

– 1-hr VLBI experiments: once per week
– 24-hourly experiments for “indirect geodesy”: once per month
– Kk/K2 short baseline 22-hourly observations: two times per month

• Global R&D VLBI program: 6–12 24-hr VLBI experiments per year

• Single dish characterization monitoring experiments on a weekly basis
(2–20 hours)
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VI. Dependencies (software, other subsystems, etc.)

• high-end server/workstations

• Access to NASA HPC
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VII. Infusion plan: Gaining VLBI accuracy task force

• focused on problem solving

• maintaining scientific leadership

• getting adequate resources

• forking traditional and advanced pipelines

• running operational advanced pipeline from day one

• making available online results of the advanced pipeline
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VIII. Issues/Concerns/Risks:

• finding and training personal will be a challenge

IX. Timeframe/Schedule:

• It would take 2 years to complete the project not counting time for getting
the team ready

• There are five sub-tasks within the project:

– source imaging and the use of images;

– the use of NWM for computation of empirical covariance matrix;

– advanced atmosphere parameterization;

– advanced stochastic atmosphere estimation;

– evaluation of remaining systematic errors.

They are loosely coupled and can be implemented in parallel.
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Backup slides
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Why atmospheric errors dominate

Evidence #1: seasonality in postfit residuals (VGOS)
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Why atmospheric errors dominate

Evidence #1: seasonality in postfit residuals (legacy system)
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Why atmospheric errors dominate

Evidence #2: seasonality in rms of zenith path delay derived from GMAO
numerical weather model Nature 7km Run
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Why atmospheric errors dominate

Evidence #3: Elevation dependence in post-fit residuals
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Contribution of source structure to delay

observed and modeled path delay due to source structure (Xu et al 2020).
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Contribution of source structure to delay

Long-term changes of source structure to delay (Xu et al. 2021a)
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Instrumental errors in VGOS

Evidence #1: Unstable phase calibration.

Phase calibration phase at RAEGYEB (rdbe backend)
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Instrumental errors in VLBI

Reference phase calibration phase at KP-VLBA

Slide 27(18)



Instrumental errors in VGOS

Evidence #2: Systematic misclosure errors in group delay

(Xu et al, 2021b)
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Instrumental errors in VGOS

Evidence #3: Systematic differences in group delays wrt phase delays
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Advanced technique of path delay estimation

Approach #1: refined parameterization:
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Advanced technique of path delay estimation

Approach #2: Determination of the height range of the most variable layer

Problem: there is a range of heights where path delay is the most variable

Input variable: horizontal and vertical wind; refractivity index; ?

Output: mapping function tuned to the most variable layer
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Advanced technique of path delay estimation

Approach #3: Characterization of refractivity anomaly field

Problems:

• What is a relationship between spatial and temporal variation?

• What are scales of validity of a 1D mapping function?

• What are regressors of the refractivity anomaly field?

Approaches:

• perform regression analysis of the NWM output

• run dedicated VLBI experiments to measure short-term variability of path
delay (scales ¡ 30 minutes)
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Advanced technique of path delay estimation

Approach #4: The use of covariance matrix of atmospheric noise for parameter
estimation

Generalized least squares requires minimization of functional

Jw =
∑
i

(Ai xi − yi)
>
C−1ia (Ai xi − yi),

Cia — a priori estimate of the covariance of observation at the i-th baseline

The goal is to find Ca

• interpolation of empirical Ca from high-res NWM

• deriving from low elevation long calibration observations

• deriving from residual estimates of path delay

• deriving from a regression to atmospheric parameters from NWM
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