
The Astronomical Journal, 142:35 (23pp), 2011 August doi:10.1088/0004-6256/142/2/35
C© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

THE VERY LONG BASELINE ARRAY GALACTIC PLANE SURVEY—VGaPS

L. Petrov
1
, Y. Y. Kovalev

2,3
, E. B. Fomalont

4
, and D. Gordon

5
1 ADNET Systems Inc./NASA GSFC, Greenbelt, MD 20771, USA; Leonid.Petrov@lpetrov.net

2 Astro Space Center of Lebedev Physical Institute, 117997 Moscow, Russia; yyk@asc.rssi.ru
3 National Radio Astronomy Observatory, Green Bank, WV 24944, USA

4 National Radio Astronomy Observatory, Charlottesville, VA 22903-2475, USA; efomalon@nrao.edu
5 NVI Inc./NASA GSFC, Code 698.2 Greenbelt, MD 20771, USA; David.Gordon-1@nasa.gov

Received 2011 January 6; accepted 2011 May 1; published 2011 June 22

ABSTRACT

This paper presents accurate absolute positions from a 24 GHz Very Long Baseline Array (VLBA) search for
compact extragalactic sources in an area where the density of known calibrators with precise coordinates is low.
The goals were to identify additional sources suitable for use as phase calibrators for galactic sources, determine
their precise positions, and produce radio images. In order to achieve these goals, we developed a new software
package, PIMA, for determining group delays from wide-band data with much lower detection limits. With the
use of PIMA, we have detected 327 sources out of 487 targets observed in three 24 hr VLBA experiments. Among
the 327 detected objects, 176 are within 10◦ of the Galactic plane. This VGaPS catalog of source positions, plots
of correlated flux density versus projected baseline length, contour plots, as well as weighted CLEAN images,
and calibrated visibility data are available on the Web in FITS format. Approximately one-half of objects from
the 24 GHz catalog were observed at dual-band 8.6 GHz and 2.3 GHz experiments. Position differences at 24 GHz
versus 8.6/2.3 GHz for all but two objects on average are strictly within reported uncertainties. We found that for
two objects with complex structures, positions at different frequencies correspond to different components of a
source.

Key words: astrometry – catalogs – surveys

Online-only material: color figures, machine-readable and VO tables

1. INTRODUCTION

The method of very long baseline interferometry (VLBI),
first proposed by Matveenko et al. (1965), has numerous ap-
plications in the areas of high-resolution imaging, differential
astrometry, absolute astrometry, space geodesy, and space nav-
igation. Because the turbulence in the neutral atmosphere and
ionospheric fluctuations set a limit of coherent averaging at typ-
ically 1–10 minutes, depending on frequency, the detection of
weak sources that require longer integration is not possible.

To overcome this limitation, the majority of VLBI observa-
tions are made in phase-referencing mode: the telescopes of the
array slew rapidly between a weak target and a nearby strong
calibrator. The phase changes of the calibrator trace the fluctua-
tions in the atmosphere, and when they are subtracted from the
phase of the target, the residual phases are essentially free from
fluctuations caused by the atmosphere, and the target integration
time can be extended almost indefinitely, enabling detection and
imaging of weak objects. This technique is called phase refer-
encing.

The technique of phase referencing also allows us to deter-
mine the precise differential position of a target with respect
to a calibrator with accuracy reaching 0.05 mas or better, even
with moderate signal-to-noise ratios (SNRs). The advantage of
differential astrometry over absolute astrometry is that the con-
tribution of unaccounted propagation delays and errors in station
positions is diluted by a factor of the target-to-source separation
in radians. Either the target or the calibrator may be observed in
a narrow band.

The ability to image weak sources and determine their
positions accurately with respect to a nearby calibrator have
made phase referencing very popular. According to Wrobel

(2009), in 2003–2008, 63% of Very Long Baseline Array
(VLBA) observations used this technique. However, to make
phase referencing possible, a dense catalog of phase calibrators
is needed such that a suitable calibrator will be found within
2◦–3◦ of any target, and for precise differential astrometry, a
calibrator position accuracy of a few milliarcseconds is needed.
Efforts to create such a catalog of calibrators commenced in
the 1980s under the NASA’s Crustal Dynamic Project program
(Ryan & Clark 1987) which ultimately resulted in the ICRF
catalog of 608 sources (Ma et al. 1998). Later, over 6000
sources were observed in the framework of the VLBA Calibrator
Survey (VCS) program (Beasley et al. 2002; Fomalont et al.
2003; Petrov et al. 2005, 2006; Kovalev et al. 2007; Petrov
et al. 2007b), the VLBA RDV program (Petrov et al. 2009),
and the continuing Australian Long Baseline Array Calibrator
Survey program (Petrov et al. 2011). By the end of 2010, the
number of known calibrators with position accuracies better than
5 mas surpassed 4600. The probability of finding a calibrator
within 2◦ of any direction is currently 64%, and within 3◦ is
90%. However, the distribution of calibrators is not uniform on
the sky due to several factors: the large-scale structure of the
universe, the location of most observing stations in the northern
hemisphere, and obscuration and confusion within 5◦ of the
Galactic plane.

Finding calibrators in the Galactic plane region is especially
difficult for several reasons. First, the region is filled with many
Galactic objects, and surveys from single antennas or kilometer-
sized arrays, which are needed to find calibrator candidates,
avoid this region; for example, the Jodrell/VLA Astrometric
Survey (Wrobel et al. 1998) and AT20G (Murphy et al. 2010).
Therefore, the pool of available candidates is limited near
the plane. Second, many potential candidates with flat spectra
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are extended Galactic objects, such as planetary nebulae or
H ii regions, that cannot be detected by VLBI. Finally, the
apparent angular size of extragalactic objects observed through
high plasma density near the Galactic plane are broadened by
Galactic scattering, and cannot be detected at low frequencies
on baselines longer than several thousand kilometers.

Nevertheless, a dense grid of calibrators in the Galactic
plane is needed for studies of compact galactic objects in both
continuum emission (pulsars, X-ray binaries) and line emission
(e.g., water masers, methanol masers, hydrogen absorption).
Some extragalactic sources near the Galactic plane have been
associated with Fermi-detected γ -ray objects (Abdo et al. 2010a,
2010b) only through VLBI calibrator surveys as suggested and
successfully shown by Kovalev (2009).

In order to increase the density of calibrators in the Galactic
plane and search for suitable calibrators within 2◦ of known
water masers, we developed an observing strategy that combined
the VERA and VLBA arrays. First, we systematically screened
2462 sources with declinations >−40◦ using the four-station
VLBI array VERA (Honma et al. 2003) at 22 GHz (K band)
by observing each object in two 120 s long scans. We detected
533 objects, 180 of them new at the K band, and these results
are given in Petrov et al. (2007a). Since precise determination
of parallaxes and proper motions of sources with water-maser
emission is one of the main targets of the VLBI Exploration
of Radio Astrometry (VERA) project, potential calibrators
near known water masers were preferentially included in the
observations.

This paper describes the follow-up VLBA observations at
24 GHz of 487 radio sources in order to determine their pre-
cise positions and images. We denote these observations as
the VLBA Galactic Plane Survey (VGaPS), and the results of
this observing campaign are described in this paper. VLBA ob-
servations, source selection, and the scheduling algorithm are
given in Section 2. The data analysis procedure is presented
in Section 3. For analysis of these observations we have de-
veloped a new approach for wide-band fringe search and as-
trometric analysis which is described in detail in Section 3.2.
The validation of the results made with the new approach is
given in Section 4. The images are described in Section 6, the
source position catalog is listed in Section 7, and the K- and
S/X-band astrometric VLBI positions are compared in
Section 8. The results are summarized in Section 9.

2. SOURCE SELECTION AND OBSERVATIONS

The VLBA observations were made at 24 GHz for several
reasons. First, Galactic scattering at low frequencies broadens
images and degrades source positions. Even at a frequency
of 2.3 GHz, many calibrators near the Galactic plane are too
broadened to be useful. Second, many Galactic radio targets
are associated with H2O maser emission at 22.5 GHz. Since
the correlated flux density of calibrators generally decreases
with increasing frequency, a good calibrator at 2.3 and 8.6 GHz
may not be sufficiently compact or bright for use at 22 GHz.
Third, source positions at 22 GHz may not necessarily be the
same as those at 8.6 GHz because of the effects of frequency-
dependent source structure, especially for multi-component
objects, and because of frequency-dependent core shifts (e.g.,
Lobanov 1998; Kovalev et al. 2008; Sokolovsky et al. 2011).

We considered the task of extending the pool of calibrators for
Galactic astrometry more broadly: not only to increase the list of
compact extragalactic radio sources within 10◦ of the Galactic
plane, but also to re-observe known sources in the K band that

are either in the Galactic plane or close to known masers at
higher Galactic latitudes. Water masers are the main target of
the VERA project, and determination of their parallaxes and
proper motions is important for studying the three-dimensional
(3D) structure and dynamics of the Galaxy’s disk and bulge,
and for revealing the true shape of the bulge and spiral arms,
its precise rotation curve, and the distribution of dark matter.
Dual-beam K-band VERA observations require calibrators with
positions known to the milliarcsecond level within 2.◦2 of the
target.

2.1. Source Selection

VLBI can detect emission only from a compact component of
a source, which should be bright enough to be detected above the
noise background. Chances of finding a radio source sufficiently
compact for VLBI detection are significantly enhanced if
information about source spectra is available. For a majority
of sources with flat spectra, i.e., with a spectral index of
α > −0.5 (S ∼ f α), synchrotron emission from a compact
core often dominates, so such sources are often compact. In
regions more than 10◦ from the Galactic plane, comparison
of surveys at different frequencies can be used to select the
sources with flat spectra. However, in the crowded Galactic
plane, source misidentification and confusion from surveys at
different frequencies often result in ambiguous information
about a source spectrum. Also, there are many extended sources
with thermal emission, such as planetary nebulae and H ii

regions, that have flat spectra but are too extended for VLBI
detection.

To determine if a candidate source was sufficiently strong and
compact to be a VLBI calibrator, we first used the VERA array at
22 GHz (Petrov et al. 2007a). In the survey ∼1400 objects within
6◦ of the Galactic plane and ∼1000 objects within 2◦ of known
maser sources outside the Galactic plane were observed with
the four-element VERA array at baselines of 1000–2000 km in
two scans each, and approximately 20% were detected. Among
the 533 detected sources, 305 objects are at Galactic latitudes of
|b| < 10◦, and 228 objects are at |b| > 10◦. The list of detected
sources included all objects with a probability of false detection
<0.1. These objects formed the first set of candidate calibrators.

We also added 239 objects in the Galactic plane and 44
objects outside the Galactic plane, selected on the basis of their
spectra using the Astrophysical CATalogs support System CATS
(Verkhodanov et al. 2005). This database currently includes
catalogs from 395 radio astronomy surveys. We selected all
entries with sources within a 20′′ radius and with measurements
of flux density for at least three frequencies in the range
1.4–100 GHz. We fit a straight line to the logarithm of the
spectrum and then estimated the spectral index and the flux
density extrapolated to 24 GHz. We selected 451 objects with
extrapolated correlated flux densities in the K-band >200 mJy,
spectral indices flatter than −0.5, and |b| < 10◦. Then,
we scrutinized this list and removed sources within 30′′ of
known planetary nebulae or H ii regions and sources with
anomalous spectra that indicated a possible misidentification.
The remaining list was added to the pool of calibrators. This
list also contained Sagittarius A∗ since it has never before been
observed with VLBI in the absolute astrometry mode.

This set of sources formed the pool of 816 candidate objects
to be followed up with the VLBA. Because of the large number
of candidate objects, a priority from 1 to 4 was assigned to
each source. The first priority was given to 180 new sources
with correlated flux densities in the range 100–300 mJy detected
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with VERA that have never been observed with VLBI before.
The second priority was given to sources in the Galactic
plane detected with VERA, the third priority was given to
other sources detected with VERA, and the least priority was
given to sources outside the Galactic plane not detected with
VERA. All new sources detected with VERA were scheduled.
Sources outside of the Galactic plane were included for logistical
reasons. Since the Galactic plane has an inclination with respect
to the equator of 62.◦6, the density of candidate sources near the
Galactic plane is a non-uniform function of right ascensions.
We thus included sources outside the Galactic plane in the right
ascension regions that had significantly fewer candidate sources
than others in order to avoid gaps in the schedules.

In addition to the target sources, we also selected 56 objects
from the K/Q survey (Lanyi et al. 2010) to serve as amplitude
and atmosphere calibrators. These are the brightest sources in
the K band with precisely known positions and publicly available
images in FITS format.

2.2. Scheduling Algorithm

A sufficiently good preliminary VLBA observing schedule
for three 24 hr sessions was prepared automatically. Then it
was manually adjusted in order to produce a more efficient final
schedule.

The three sets of information needed in order to compile
the schedule were: (1) the list of the 816 target sources with
their J2000 positions and priority levels, (2) the list of the 56
calibration sources at 24 GHz, and (3) the two or three sidereal
times ranges (at the array center at station PIETOWN) at which
each source should be observed. These times were a function
of the source declination. For example, a source with δ > 50◦
could be observed three times with very flexible time ranges,
whereas a source with δ < −35◦, must have tight ranges in order
to be observed by at least eight VLBA antennas at an elevation
higher than 10◦.

The scheduling goal was to observe each source for three
scans of 120 s, unless it was south of declination −25◦, in
which case only two scans were scheduled. With an average
overhead of about 45 s between sources, about 1550 scans over
the three days (72 hr) could be scheduled. Every 90 minutes, four
scans were reserved for atmosphere calibrators. The algorithm
then began filling in observing slots, taking the highest priority
sources first, and those at the lowest declinations, since these
have minimal scheduling flexibility. The algorithm scheduled
sources that were relatively close to one another in the sky
in order to minimize slew times, which can be as long as
three minutes.

The slots containing the calibrators were chosen in order to
maximize the range of elevations for the VLBA antennas. In
practice, this meant maximizing elevations of observed sources
at SC-VLBA, MK-VLBA and PIETOWN. It was important to
have one low elevation observation for all telescopes, and this
could be scheduled by observing a source either in the far north
and/or in the far south. All three days were scheduled at the
same time, since it did not matter on which day any of the three
sidereal time slots occurred for a source.

The final schedule optimization was done “by hand” and
consisted of several steps. First, some sources could be placed
in only one or two slots and would have to be removed if another
slot could not be found. Since about 10% of the slots could not
be filled using the automatic algorithm because the source list
was not uniformly distributed over the sky, additional slots were
usually found to complete a source’s schedule requirement. This

Table 1
VLBA Target Sources from VERA Observations

Group Pool Scheduled Detected Ratio

Galactic, VERA 305 184 140 76%
Non-Galactic, VERA 228 151 133 88%
Galactic, others 239 108 36 33%
Non-Galactic, others 44 44 15 34%

Total 816 487 327 67%

often meant bending some of the rules or moving calibration
sources or blocks by five to fifteen minutes. In regions where the
target source density was large, scan integrations were decreased
from 120 s to 110 s. All sources with priority 1 were included.

The next stage insured that the calibration scans were opti-
mized in order to obtain good elevation coverage for the an-
tennas. The purpose of these observations was (1) to serve as
amplitude and bandpass calibrators, (2) to improve robustness
of estimates of the path delay in the neutral atmosphere, and (3)
to tie the source positions of new sources to existing catalogs
such as the ICRF catalog (Ma et al. 1998). The final stage of
optimization tweaked the observing schedule in obvious ways
in order to save slewing time since the scheduling algorithm did
not minimize slew times, and because of the above adjustments
to insure proper observing coverage for each source. The sched-
ule for each session was then carefully checked using the NRAO
SCHED program to insure that each scan had sufficient integra-
tion time, and no more than one of the antennas was below 10◦
elevation (except for sources south of −35◦).

The results of the scheduling and ultimate detection for each
priority group is given in Table 1. The number of target sources
selected in each group is given in Column 2, those scheduled
in Column 3, those detected by the VLBA in Column 4, and
the detection rate in the last column. The first two groups are
sources detected in the VERA Fringe Search Survey; the last
two groups contain other objects. The table does not include the
56 sources used as atmosphere calibrators.

2.3. Observations

The VGaPS observations were carried out in three 24 hr
observing sessions at the VLBA on 2006 June 4, 2006 June
11, and 2006 October 20. Each target source was observed in
several scans: three sources in one scan, 356 sources in two
scans, one source in three scans, 124 in four scans and three
sources in five scans. The scan durations were 100–120 s. In
total, antennas spent 57% of time on target sources. In addition
to these target objects, 56 strong sources previously observed in
the K band were taken from the astrometric and geodetic catalog
2004f_astro.6

The data digitized at four levels were recorded with a rate
of 256 Mbit s−1 in eight 8 MHz wide intermediate frequencies
(IF) bands spread over a bandwidth of 476 MHz (Table 2).
The frequencies were selected to minimize the amplitude of
sidelobes of the Fourier transform of the bandpass.

3. DATA ANALYSIS

The data were correlated in Socorro on the VLBA hardware
correlator. The correlator output contains the complex spectra

6 http://astrogeo.org/rfc
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Table 2
Lower Edge IF Frequencies (in GHz)

IF Index Frequency

IF1 24.20957
IF2 24.22257
IF3 24.26157
IF4 24.33957
IF5 24.48257
IF6 24.58657
IF7 24.65157
IF8 24.67757

of the auto-correlation function and the spectrum of the cross-
correlation function for each accumulation period. The accu-
mulation period was chosen to be 0.131072 s, and the spectral
resolution was set to 0.5 MHz, i.e., 16 spectral channels per IF.

After correlation, the data were stored in a file compliant
with the FITS-IDI specifications (Eric Greisen, NRAO memo
N1147). Small a priori amplitude corrections were applied; bad
data were flagged (sometimes bad data are not found until later
processing); and the definitions of the reference frequencies
were modified.

Further data analysis involves computation of group delays
for each scan and each baseline, computation of theoretical path
delay, and then fitting parameters of the linear model into the
differences between the observed and theoretical delays using
least squares (LSQ).

3.1. Traditional Narrow-band Fringe Fitting Algorithm

The data set then contains 128 data streams for each of the
45 baselines if all 10 VLBA antennas are operating: eight IFs,
each with 16 equally space frequency channels. After the com-
plex bandpass calibration, the phase difference among all of the
frequency streams remains unchanged, and the relevant residual
phase parameters associated with any scan are (1) the residual
phase at the scan midpoint, (2) the average group delay (phase
gradient with frequency), and (3) the average delay rate (de-
lay gradient with time), for each antenna. These parameters are
called the residual phase terms. These parameters are estimated
with a fringe fitting procedure. Generally, one antenna is chosen
as the reference—a well-behaved one near the array center—so
that the set of residual phase terms is associated for each scan
and all other antennas. These parameters are functions of many
astrometric quantities (source position, site positions, antenna-
based tropospheric path delays, Earth orientation parameters,
etc.), which can be determined from analysis systems like
Calc/Solve from data obtained from carefully prepared observ-
ing schedules. Source structure and dispersive phase effects
(e.g., ionosphere) produce a non-linear phase/frequency rela-
tionship.

The algorithm that determines the residual phase terms is
implemented in the AIPS task FRING, and in the past, all
VLBA observations under the absolute astrometry and geodesy
programs, such as VCS, RDV, and K/Q, were processed with the
use of this software (Greisen 1988). When IFs are spread over a
wide band with gaps, the AIPS algorithm determines the residual
phase in two steps: first, for each of the eight IFs the residual
phase, single-band group delay, and rates are independently
obtained. Then, the residual phases of each IF are fit to a linear

7 Available at ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/PUBL/
AIPSMEM114b.PS.

phase versus frequency term to produce the group delay, using
the AIPS program MBDLY. This procedure is described in detail
in Petrov et al. (2009).

3.2. Wide-band Baseline-based Fringe Fitting Algorithm

The two-step approach has a substantial shortcoming: it
requires fringe detection for each individual IF independently
within a narrow band. Using all N IFs simultaneously for
coherent averaging, we can detect a source with an amplitude
smaller than

√
N using only one IF. This degradation of the

detection limit does not pose a problem for most geodesy
observations, or for absolute astrometry of bright sources,
since the target SNR is usually very high, but it significantly
impacts absolute astrometric experiments of weak sources. The
traditional AIPS algorithm did not detect a sizeable fraction of
the sources observed in the VGaPS experiment.

This limitation motivated us to develop an advanced algorithm
for wide-band fringe fitting across all of the IFs within the band.
For logistical reasons, instead of augmenting AIPS with the
new task, we decided to develop a new software package called
PIMA8 from scratch that is supposed to replace the AIPS for
processing absolute astronomy and geodesy experiments. Here
we outline the method of wide-band fringe search used for
processing this experiment.

3.2.1. Spectrum Re-normalization

Digitization of the input signal and its processing with a
digital correlator causes an amplitude distortion with respect to
an ideal analogue system. As documented by Kogan (1995),
many effects distort both cross-correlation and auto-correlation
spectra exactly the same way. Therefore, if we divide the cross-
correlation spectrum by the auto-correlation spectrum averaged
over time and over frequencies within each IF, we will remove
these distortions. However, there are two effects that affect cross-
and auto-spectra differently because the amplitude of the cross-
spectrum is very low and the amplitude of the auto-correlation
spectrum is close to 1.

The non-linear amplitude distortion of the digitized
signal was studied in depth by Kogan (1998) who derived a
general expression for the correlation coefficient of the digi-
tized signal as a function of the correlation coefficient of the
hypothetical analogue signal. In the absence of fringe stopping,
the output correlation coefficient ρout is expressed via the cor-
relation coefficient for an analogue case ρ as

ρout = 2κ

∫ ρ

0

1√
1 − ρ2

dρ

+ 2κ(n − 1)
∫ ρ

0

1√
1 − ρ2

(
e
− v2

2(1−ρ2) + e
− v2

1
2(1−ρ2)

)
dρ

+ κ(n − 1)2
∫ ρ

0

1√
1 − ρ2

×
(

e
− v2

1−2ρv1v2+v2
2

2(1−ρ2) + e
− v2

1 +2ρv1v2+v2
2

2(1−ρ2)

)
dρ, (1)

where κ is the normalization coefficient, n is the ratio of the
two levels of quantization, and v1 and v2 are the dimensionless
digitizer levels in units of variance of the input signal. Their
numerical values compiled from the paper of Kogan (1993) are
presented in Table 3.

8 Available at http://astrogeo.org/pima.
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Table 3
Numerical Coefficients in Integral (1) for Three Cases
of the Number of Bits per Sample: (1,1), (1,2), (2,2)

Comb. of Bits n v1 v2 κ

(1,1) 1.0 0.0 0.0 0.3803
(1,2) 3.3359 0.0 0.9816 0.05415
(2,2) 3.3359 0.9816 0.9816 0.07394

When ρ � 1, the dependence ρout(ρ) becomes linear: ρout =
2/π · ρ ≈ 0.6366ρ for the case of one-bit sampling, and ρout ≈
0.8825ρ for the case of two-bit sampling. Therefore, distortion
of the cross-spectrum is proportional to ρout/ρ, and dividing the
cross-spectrum by 0.6366 or 0.8825 we eliminate the distortion
of the fringe amplitude introduced by the digitization.

However, the amplitude of the auto-correlation spectrum is
close to 1, and we cannot ignore non-linearity of ρout(ρ). To
correct the auto-correlation spectrum for digitization distortion,
we follow the procedure outlined by Kogan (1995). First, the
auto-correlation is inverse Fourier transformed. It should be
noted that the correlator provides the auto-correlation for N
spectral channels for non-negative frequencies from 0 to N − 1.
We restore the auto-correlation at the Nth channel by linear
extrapolation using the N − 2 and N − 1 values of the spectrum
and set the spectrum for N −1 negative frequencies to zero. The
dimension of the Fourier transform is 2N . Second, the result
of the transformation, the auto-correlation coefficient versus
time lag, is de-tapered, i.e., divided by the self-convolution of
the weighting function. The VLBA correlator normally uses
uniform weighting, i.e., uses weight 1 for all points. The self-
convolution of the uniform weighting is a triangle function ∧(i):

∧(i) =
⎧⎨
⎩

1

N
(N − |i|) if |i| < N

0 otherwise.

Third, the correlation function is divided by its maximum
which is found at the zero lag. Fourth, each correlation coef-
ficient is divided by ρout(ρ). Fifth, the correlation function is
multiplied back by the stored value at the zero lag. Sixth, the
correlation function is again tapered by multiplying it by ∧(i).
Finally, we perform the Fourier transform of the corrected cor-
relation function and get the re-normalized auto-spectrum, free
from digitization distortion. The square root of the product of
the auto-correlation spectra from two stations of a baseline, av-
eraged over time and frequency within each IF, gives us an esti-
mate of the fringe amplitude scale factor, but before dividing the
cross-correlation spectrum by this scale factor, we have to take
into account a specific effect of the hardware VLBA correlator.9

An insufficient number of bits in internal correlator registers
resulted in a decrease of the amplitude when it was large, and
when that happened, the auto-correlation spectra was corrupted.
Kogan (1993) suggested the following model for accounting for
this effect:

F = 1 +
w

4SAVs

, (2)

where w is the weight of the spectrum data equal to the ratio
of processed samples to the total number of samples in an
accumulation period, A is the accumulation period length, S
is 2 when the correlator processed single polarization data and 1

9 The new VLBA software DiFX correlator does not have this problem.

if both polarizations were correlated, and Vs is the visibility scale
factor provided by the correlator. We divide the auto-correlation
spectrum by the factor F.

3.2.2. Coarse Fringe Search

The correlator output provides auto-correlation and cross-
correlation spectra for each pair of baselines and each scan.
The cross-correlation spectrum is computed at a uniform two-
dimensional (2D) grid of accumulation periods and frequencies
and is accompanied with weights that are the ratio of the number
of processed samples in each accumulation period to the nominal
number of samples.

The fringe fitting procedure searches for phase delay τp , phase
delay rate τ̇p, group delay τg , and its time derivative τ̇g which
correct their a priori values used by the correlator model in
such a way that the coherent sum of weighted complex cross-
correlation samples ckj,

C(τp, τg, τ̇p, τ̇g) =
∑

k

∑
j

ckjwkj

× ei(ω0τp + ω0 τ̇p(tk − t0) + (ωj − ω0)τg + (ωj −ω0)τ̇g(tk − t0)), (3)

reaches the maximum amplitude. Index k runs over time, and
index j runs over frequencies. ω0 and t0 denote the angular
reference frequency within the band and the reference time
within a scan and wkj is weight. Function C(τp, τg, τ̇p, τ̇g) is
essentially non-linear, and we need a really good starting value
in order to find the global maximum by traditional optimization
algorithms. We can notice that term 2πω0τp in expression (3)
does not depend on the summation indices, and τ̇g is usually
small. Therefore, for the purpose of a coarse fringe search we
simplify expression (3) to

C(τp, τg, τ̇p)e−i2πω0τp ≈
∑

k

∑
j

ckj × ei(ω0 τ̇p(tk−t0) + (ωj −ω0)τg).

(4)

For the search of the maximum, the trial functions
C(τp, τg, τ̇p) are computed on a dense grid of the search
space τg, τ̇p. It follows immediately from expression (4) that
|C| = |F(ckj )|, where F denotes the 2D Fourier transform.

The first step of the coarse fringe search is to compute the
2D fast Fourier transform (FFT) of the matrix of the cross-
correlation spectrum. The first dimension of the matrix runs
over time, and the second dimension runs over frequency. The
sampling intervals are Δt/β and Δf/γ , where Δt and Δf are the
duration of the accumulation period and the spectral resolution,
respectively, and β and γ are integer oversampling factors.
The elements of the matrix that do not have measurements
or have discarded measurements are padded with zeroes. The
dimensions of the matrix are chosen to have a power of 2
for gaining the maximum performance of the FFT numerical
algorithm.

Oversampling factors greater than 1 are used to mitigate
amplitude losses. The FFT produces estimates of |C| at a discrete
grid of group delays and delay rates. If the maximum of the
amplitude of the coherent sum of the cross-correlation function
samples falls at group delays and delay rates between the nodes
of the grid, its magnitude will be greater than the amplitude of
|C| at the nearest grid point by a factor of L.
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The amplitude loss factor L of the coarse search matrix is the
integral average over time and frequency:

L = 1

ts

∫ ts /2

−ts /2
cos 2π

(
ω0τp − k

βts

)
tdt

× 1

fb

∫ fb/2

−fb/2
cos 2π

(
ω0τg − l

γfb

)
f df, (5)

where k and l are indices of the nearest grid nodes, ts
is the scan duration, and fb is the total bandwidth. The
integral (5) is easily evaluated analytically, and the maximum
losses L = sinc (π/ (2β)) · sinc (π/ (2γ )) are achieved when τ̇p

and τg happen to be just between grid nodes. In a case where
the oversampling factor is 1, L = 4/π2 ≈ 0.405. That loss fac-
tor effectively raises the detection limit by 1/L = 2.467 in the
worst case. We used the grid 4096 × 4096 which corresponds
to β = 4, γ = 4 for ts = 120 s, fb = 476 MHz. Therefore, the
maximum loss factor for our experiment is 0.959, which results
in raising the detection limit by no more than 4.1%.

The group delay and delay rate that correspond to the
maximum of the discrete Fourier transform of the cross-
correlation matrix provide the coarse estimates of group delay
and delay rate. Their accuracy depends on the grid resolution.
The next step is to refine their estimates. The first stage of
the fine search is an iterative procedure that computes |C| at a
progressively finer 3D grid in close vicinity of the maximum
using the discrete 3D Fourier transform. The third dimension is
group delay rate, omitted during the coarse search. Dimensions
of the transform for the group delay, phase delay rate, and group
delay rate are 3, 3, and 9, respectively. At the first step of
iterations, the grid runs over ±1 element of the coarse grid for
group delays and phase delay rates and in the range ±2 × 10−11

for the group delay rate. After each step of iterations, the grid
centered around the maximum element shrinks its step by 2. In
total, eight iterations are run. The phase of the coherent sum
of the cross-correlation function determined with the iterative
procedure according to expression (4) is the fringe phase with
the opposite sign.

3.2.3. Probability of False Detection

The significance of the fringe amplitude depends on the level
of noise. In the absence of signal, the amplitude of the cross-
correlation function a has a Rayleigh distribution of:

p(a) = a

σ 2
e
− a2

2σ2 , (6)

where σ is the standard deviation of the real and imaginary part
of the cross-correlation function and n is the total number of
spectrum points. In a case where all points of the spectrum are
statistically independent, the cumulative distribution function of
the coherent sum over n points is (Thompson et al. 2001)

P (a) =
(

1 − e
− a2

2σ2

)n

. (7)

Differentiating this expression, we find the probability density
function of the ratio of the amplitude of the coherent sum of
spectrum samples of the noise to its standard deviation as

p(a) = n
a

σ 2
e
− a2

2σ2

(
1 − e

− a2

2σ2

)n−1

. (8)

Table 4
Probability of False Detection as a Function of SNR

SNR Pf (s)

4.96 0.3
5.19 0.1
5.61 0.01
5.99 0.001
6.68 10−5

Under the assumption that all samples are statistically inde-
pendent, the variance of the noise of the coherent sum of N
samples is scaled as σ = σs/

√
tsSr , where Sr is the sampling

rate of the recorded signal (6.4 × 107 in our experiment), ts is
the scan duration, and σs is the variance of an individual sample,
1 for a perfect system.

However, the assumption of statistical independence is an
idealization. The presence of systematic phase errors, deviation
of the bandpass from the rectangular shape, and other factors
distort the distribution. The deviation from the statistical inde-
pendence is difficult to assess analytically.

We evaluate the variance of the noise by estimating the
variance over a sample of 32,768 random points in the region
of the Fourier transform of the coherent sum of the cross-
correlation that does not contain the signal. The indices of
grid elements of the sample are produced by using the random
number generator. The sample of amplitudes is ordered, and
half of the points greater than the median are rejected. The
variance over the remaining points is computed and an iterative
procedure is launched that adds back previously rejected points
in ascending order of their amplitudes and updates the mean
value and variance. The iterations are run till the maximum
amplitude of the next sample reaches 3.5σa . The initial rejection
and consecutive restoration of points with amplitudes >3.5σa

ensures that no points with signal from the source affect the
computation of σa and 〈a〉. The rejection of the tail of the
amplitude distribution causes a bias in estimate of the mean,
but the magnitude of the bias is only −2 × 10−4, which is
negligible. We define a signal-to-noise ratio as SNR = a/〈a〉. It
follows immediately from expression (6) that 〈a〉 = √

π
2 σ .

We assume that the a posteriori distribution of the SNR
s = a/σa can be approximated as a function like
expression (8) with effective parameters of σeff and neff :

p(s) = 2

π

neff

σeff
se− s2

π

(
1 − e− s2

π

)neff−1
. (9)

These parameters σeff and neff can be found by fitting the
left tail of the empirical distribution of the SNRs. Using
their estimates, we can evaluate the probability of finding an
amplitude less than a if no signal is present, i.e., the probability
of false detection:

Pf (s) = 1 −
∫ s

0
p(s) ds = 1 − 1

σeff

(
1 − e− s2

π

)neff

. (10)

The low end of the empirical SNR distribution and the table
of the probability of false detection for VGaPS experiments are
shown in Figure 1 and Table 4.

3.2.4. Fine Fringe Search

Finally, the group delay, phase delay rate, group delay rate,
and fringe phase at the reference frequency are estimated using
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Figure 1. Low end of the empirical distribution of the achieved SNR for the
fringe amplitude from results of fringe fitting VLBA data (filled circles) and the
fitted curve (thin line) of the theoretical distribution for the case of no signal.

(A color version of this figure is available in the online journal.)

Figure 2. Variance of fringe phase as a function of the normalized amplitude
A/σn in the presence of a signal with given SNR.

(A color version of this figure is available in the online journal.)

LSQ in the vicinity of the maximum provided its amplitude
exceeds the detection limit. The goal of the LSQ refinement
is to obtain realistic estimates of statistical errors of fitted
parameters and to account for possible systematic errors by
analyzing residuals. All cross-correlation spectrum data points
of a given observation are used in a single LSQ solution with
weights reciprocal to their variance.

Determining the variance of the fringe phase of an individual
point is trivial only in two extreme cases: when SNR � 1, and
when SNR  1. In the first case the fringe phase distribution
becomes uniform in the range of [0, 2π ] with a variance of
π/

√
3 ≈ 1.813. In the second case expanding the expression

for fringe phase in the presence of noise φ = arctan Si+ni

Sr +nr
,

where Si and Sr are the real and imaginary parts of the signal
and ni and nr are the real and imaginary parts of the noise,
into the Taylor series, neglecting terms O(n/S2), and evaluating
the variance of the expansion, we get σφ =

√
2
π

1
s/n

. For the
general case, the problem becomes more difficult, since the σφ

depends on the variance of the noise and on the amplitude of the
signal nonlinearly. An analytical solution requires evaluation
of complicated integrals that are not expressed via elementary
functions.

We used the Monte Carlo approach to compute these vari-
ances. Let us consider a random complex set s = A + nr + ini ,
where A is the amplitude of the simulated signal and nr, ni are

Figure 3. Probability density distribution of fringe phase with SNR = 1.

(A color version of this figure is available in the online journal.)

independent random variables with Gaussian distribution. Their
variance σ was selected in such a way that A = √

π
2 σSNR.

Then for a given SNR, we can compute the variance of phase of
s as a function of the normalized amplitude |s|/σ . This is done
by generating a long series (1 billion points) of the simulated
complex signal for a given SNR, computing the amplitude and
phase of the time series, splitting the signal into a uniform grid
of 128 bins over normalized amplitude that spans the interval
[SNR − 4.5, SNR + 4.5], computing the variance of the phase
of the simulated signal over all points that fall into each bin, and
approximating the dependence of σφ(|s|/σ ) with a smoothing
B-spline of third order over six nodes. We computed σφ(|s|/σ )
for SNRs in the range [0, 12.7] with steps of 0.1. Examples of
this dependence for several SNRs are shown in Figure 2. The
set of B-spline coefficients forms a 2D table with axes SNR and
normalized amplitude which allows us to evaluate σφ for a given
SNR and a given fringe amplitude.

It should be noted that the SNR of the coarse search is
related to the amplitude coherently averaged over all valid cross-
correlation spectrum samples,

∑Nt

k

∑Ns

j wkj , where Nt is the
number of accumulation periods and Ns is the total number
of spectral channels. The SNR of an individual accumulation

period (the elementary SNR) is
√∑Nt

k

∑Ns

j wkj times less. For
our experiments, the typical reduction of the SNR is a factor of
340. This means that for almost all sources the elementary SNR
will be less than 1. As we have seen previously, the distribution
of fringe phases at very low SNRs is close to uniform with a
variance of π/

√
3. The phase becomes uncertain due to the 2π

ambiguity, and the LSQ estimation technique loses its diagnostic
power. Therefore, the cross-correlation function with applied
phase, phase delay rate, and group delays computed during the
coarse fringe search have to be coherently averaged over time
and frequency in segments large enough to have sufficiently
high SNR over a segment to provide an ambiguous phase. As
seen in Figure 3, the fringe phase distribution at SNR = 1 is
already sharp enough for that. Therefore, the number of spectral
channels and the number of accumulation periods within a
segment is chosen in such a way that the SNR is at least 1.
Marginally detected scans with SNR = 5 have 24 segments that
average all spectral channels within an IF and over 1/3 of the
scan interval.

Using all segments, we determine four fitting parameters p
using the LSQ:

p = (A�WA)−1A�Wφs, (11)

7
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where A is the matrix of observations, W is the diagonal weight
matrix and φs is the vector phases of the cross-correlation
function averaged over segments.

The mathematical expectation of the square of the weighted
sum of residuals R in the presence of noise ε is

E(R) = Tr(WCov ε) − Tr(Cov εWA(A�WA)−1A�W),
(12)

which is reduced to n − m, where n is the number of equations
and m is the number of estimated parameters if the weight matrix
W is chosen to be (Covε)−1.

The presence of additive errors, for example fluctuations in
the atmosphere, will increase Covε and our estimate of the
error variance based on the amplitude of the spectrum sample
without knowledge of the scatter of the cross-spectrum phases
is incomplete. A small additive noise with variance k times less
than the amplitude of the signal affects the amplitude as O(k2),
but it affects the phase as O(k). One of the measures of the
incompleteness of the error model is the ratio of the square of
the weighted sum of residuals to its mathematical expectation.

We can extend our error model assuming that the weight
matrix is W = Covε−1 − q2I , where I is the unit matrix of the
same dimensions as W and q is the parameter. This model is
equivalent to an assumption that the used squares of weight of
each segment are less than the true one by some parameter q
equal to all segments. The mathematical expectation of R for
this additive weighting model is

E(R) = n − m + q2[Tr(W) − Tr(W(AW2A)−1A�)]. (13)

Inverting Equation (13), we find q for a given E(R):

q =
√

E(R) − (n − m)

Tr(W) − Tr(W(AW2A)−1A�)
. (14)

Replacing the mathematical expectation of R with its value
evaluated from the residuals, we can find the re-weighting pa-
rameter q for a given solution. Several iterations provide a quick
convergence of E(R)

R
to 1. Applying an additive re-weighting

constant results in an increase in estimates of parameter uncer-
tainties. It may happen that q becomes imaginary. This means
that W was overestimated. In our analysis we set q = 0 when
that happens.

3.2.5. Complex Bandpass Calibration

Coherent averaging of the cross-correlation spectrum over
frequencies assumes that the data acquisition system does not
introduce a distortion of the recorded signal, but this is usually
not the case. Each intermediate frequency has its own arbitrary
phase offset and group delay that may vary with time. The
imperfection of baseband filters results in a non-rectangular
shape of the amplitude response.

To calibrate these effects, a rail of narrow-band phase cali-
brator signals with a spacing of 1 MHz was injected near the
receivers. Two tones per IF were extracted by the data acquisi-
tion hardware, and their phase and amplitude are available for
data analysis. When the phase of the phase calibration signal is
subtracted from fringe phases, the result is referred to the point
of injection of the phase calibration signal and this procedure is
supposed to take into account any phase changes that occurred
in the signal passing through the data acquisition terminal. How-
ever, we should be aware of several complications that emerge
when we try to use the benefits of the phase calibration signal.

First, the phases of two tones of the phase calibration signal
separated by 6 MHz, as in our sessions, have ambiguities. Since
the instrumental group delay may reach several phase turns over
an 8 MHz IF, the second phase calibration tone is useless with-
out resolving the ambiguity. Second, the phase calibration itself
may have a phase offset or may become unstable if its ampli-
tude is not carefully tuned. Therefore, we need to re-calibrate
the phase calibration signal itself in order to successfully apply
it to data.

We compute the complex bandpass function for each sta-
tion, except the reference station, that describes the residual
instrumental complex bandpass after applying the phase cali-
bration signal. The cross-correlation spectrum needs to be di-
vided by the complex bandpass in order to correct the instru-
mental frequency-dependent delay and fading of the amplitude.
The procedure for evaluating the complex bandpass has several
steps.

First, all data are processed applying the first tone of the
phase calibration, i.e., the phase of the phase calibration signal
is subtracted from each phase of the cross-correlation signal at
a given IF.

Second, the bandpass reference station is chosen. Then, for
each station, we find an observation at a baseline with the
reference station that provided the maximum SNR during the
first run. Then for each IF we average the residual spectrum
over time and perform a linear fit to the residual phases to
determine the instrumental group delay. Using this instrumental
group delay, we extrapolate the phase of the phase calibration
signal of the first phase calibration tone to the frequency of the
second phase calibration tone and resolve its phase ambiguity.
After that, we re-run the fringe search procedure for these
scans by applying the phase calibration phase to each IF in
the form of a linear function of phase versus frequency that
is computed from two phase calibration tones with resolved
phase ambiguity. The result of the new fringe search gives a
new residual spectrum. Then we averaged the residual spectrum
over time and over M segments within each IF (M = 2 in our
experiment). The amplitude of the spectrum is normalized by
dividing the average amplitude over all IFs. The phase and the
amplitude of the residual averaged spectrum are approximated
with a fifth degree Legendre polynomial. The result of this
approximation as a complex function of frequency defines the
so-called initial complex bandpass. Analysis of the residuals
of rejected observations helps to diagnose malfunction of the
equipment. For example, one or more video converters may
fail, which may result in a loss of coherence. In that case, the
part of the affected cross-correlation spectrum is masked out.

Third, we refine the complex bandpass. We select N more
observations with the highest SNR from the first run at all
baselines (N = 16 in our experiment) and re-run the fringe
fitting procedure with applied phase (but not amplitude!) of
the initial bandpass. We compute a residual spectrum averaged
over time and M segments for each processed observation and
normalize its amplitude. Then we fit a set of six coefficients of
the Legendre polynomial for each station, except the reference
one, for each IF, for both amplitude and phase to the phase
and amplitude of the residual spectrum using a single LSQ
solution. Then the residuals are computed and the observations
with the maximum absolute value of residual phases and residual
amplitudes are found separately. If the maximum absolute value
of residual phase or residual amplitude exceeds the predefined
limit, the affected observation is removed and the solution is
repeated. Iterations are run until either the absolute values of
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Figure 4. Residual fringe phases (radians) before (left) and after (right) applying bandpass calibration in experiment bp125b.

(A color version of this figure is available in the online journal.)

all remaining residuals are less than the predefined limit or the
number of observations at a given baseline drops below N/2.
The fitted Legendre polynomial coefficients are added to the
coefficients of the initial bandpass and the result defines the
so-called fine complex bandpass.

Fourth, all observations are reprocessed with the fine band-
pass applied: the phase of the fine complex bandpass of the
remote station of a baseline is subtracted and the phase of the
bandpass of the reference station of a baseline is added before
fringe fitting, and the amplitude is divided by the square root of
the products of bandpass amplitudes after fringe fitting. Exam-
ples of residual phases before and after calibration are shown in
Figure 4.

3.3. Computation of Total Group Delays
and Phase Delay Rates

The results of the fringe search are residual phase and group
delay as well as their time derivatives determined from analysis
of an observation at a given baseline of a given scan with respect
to the a priori delay model used by the correlator. We need to
compute the total path delay related to a certain moment of time
common to all observations of a scan, called a scan reference
time (tsrt).

For logistical reasons, fringe searching at different baselines
is performed independently and therefore, each observation has
its own reference epoch, called fringe reference times (tfrt). This
time epoch is computed as the weighted mean epoch of a given
observation. Since stations usually start and end at slightly
different times and the number of processed samples may be
different, in general, tfrt is different at different baselines of the
same scan. The scan duration may be significantly different at
different stations either by a schedule design when antennas
with different sensitivities participate in observations—this is
often made in geodetic observations, or due to losses of some of
the observing time at stations for various reasons. If we set tsrt
as an average of tfrt over all baselines of a scan, it may happen
that for some baselines the difference tsrt − tfrt may reach several
hundred seconds. Setting a common tsrt for as many baselines
as possible is desirable since it allows computation of delay
triangle misclosures and some other important statistics. On
the other hand, the uncertainty of the group delay estimate is

minimal at tfrt. The uncertainty in group delay at tsrt becomes

σ 2
τ (tsrt) = σ 2

τ (tfrt) + 2Cov(τ, τ̇ )(tsrt − tfrt) + σ 2
τ̇ (tsrt − tfrt)

2,
(15)

which is undesirable. In our work, we set the tolerance limit for
the growth of the uncertainty due to the differences between
tsrt and tfrt to 0.1σ or 5 ps, whichever is less. Setting this
limit, we find for each observation the maximum allowed
|tsrt − tfrt| by solving quadratic Equation (15). In a case where all
observations of a scan have overlapping intervals of acceptable
scan reference times, we set it to the value that minimizes
2
∑

Cov(τ, τ̇ )(tsrt − tfrt) + σ 2
τ̇ (tsrt − tfrt)2 over all observations.

In the case where there are observations that have intervals of
acceptable tsrt that are not overlapping, the set of observations of
a scan is split into several subsets with overlapping acceptable tsrt
and the optimization procedure is performed under each subset.
Finally, tsrt is rounded to the nearest integer second.

The VLBA correlator shifts the time tag of data streams from
each station to the moment of time when the wavefront reaches
the center of the coordinate system. This operation facilitates
correlation and allows station-based processing. The a priori
path delay is computed for this modified time tag. This shift of
the time tag depends on the a priori parameters of the geometric
models, and therefore the total path delay produced from such a
modified quantity would depend on errors of the a priori model
which would considerably complicate data analysis. Therefore,
we have to undo this shift of the time tag for the reference station
of a baseline for further processing.

The correlator delay model for the VLBA hardware and
software correlators is computed as a sum of a fifth-degree
polynomial fit to the geometric delays, the linear clock offset,
and the coarse atmospheric model delay over intervals of 120 s.
We find the a priori delay of the baseline reference station τ rf

a

related to the time tag at TAI of the wavefront arrival to its phase
center from the implicit equation

τ rf
a =

k=5∑
k=0

arf
i

(
tsrt − to − (

τ rf
a − τ rf

cl − τ̇ rf
cl τ

rf
a − τ rf

atm

))k
, (16)

which is solved by iterations. Here, to is the TAI time tag of the
polynomial start time and τ rf

cl and τ rf
atm are the clock model and

the atmosphere contribution of the a priori path model. We set
τ rf
a on the right-hand side of expression (16) to zero for the first
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iteration. Three iterations are sufficient to reach the accuracy of
0.1 ps. Using the value τ rf

a found at the last iteration, we compute
the a priori path delay for the remote station of the baseline:

τ rm
a =

k=5∑
k=0

arm
i

(
tsrt − to − (

τ rf
a − τ rm

cl − τ̇ rm
cl τ rf

a − τ rm
atm

))k
. (17)

The a priori delay rate is computed using an expression similar
to Equation (17). Finally, we compute the total path delay by
extrapolating the residual delay to the scan reference time:

τtot = τ rm
apr − τ rf

apr + τres + τ̇res(tsrt − tfrt). (18)

The delay produced this way is the difference between the
interval of proper time measured by the clock of the remote
station between events of arrival of the wave front to the
reference point of the remote antenna and clock synchronization
in TAI and the interval of proper time measured by the clock
of the reference station between events of arrival of the wave
front to the reference point of the reference antenna and clock
synchronization in TAI.

3.4. Astrometric Analysis: Delay Modeling

Our computation of theoretical time delays in general follows
the approach presented in detail by Sovers et al. (1998) with
some refinements. The most significant ones are the following.
The advanced expression for time delay derived by Kopeikin &
Schäfer (1999) in the framework of general relativity was used.
The displacements caused by the Earth’s tides were computed
using the numerical values of the generalized Love numbers
presented by Mathews (2001) following a rigorous algorithm
described at Petrov & Ma (2003) with truncation at a level of
0.05 mm. The displacements caused by ocean loading were
computed by convolving the Green’s functions with ocean tide
models using the NLOADF algorithm of Agnew (1997). The
GOT00 model (Ray 1999) of diurnal and semi-diurnal ocean
tides, the NAO99 model of ocean zonal tides (Matsumoto
et al. 2000), the equilibrium model (Petrov & Ma 2003) of
the pole tide, and the tide with a period of 18.6 years were used.
Atmospheric pressure loading was computed by convolving the
Green’s functions with the output of the atmosphere NCEP
Reanalysis numerical model (Kalnay et al. 1996). The algorithm
of computations is described in full detail in Petrov & Boy
(2004). The empirical model of harmonic variations in the Earth
orientation parameters heo_2009120110 derived from VLBI
observations according to the method proposed by Petrov (2007)
was used. The time series of UT1 and polar motion from the
Goddard operational VLBI solutions were used as a priori.

The a priori path delays in the neutral atmosphere in directions
toward observed sources were computed by numerical integra-
tion of differential equations of wave propagation through the
heterogeneous media. The four-dimensional field of the refrac-
tivity index distribution was computed using the atmospheric
pressure, air temperature, and specific humidity taken from the
output of the Modern Era Retrospective-Analysis for Research
and Applications (MERRA; Schubert et al. 2008). That model
presents the atmospheric parameters at a grid 1/2◦ × 2/3◦ × 6h

at 72 pressure levels.
To consider the contribution of the ionosphere to the phase

of the cross-correlation spectrum, note that the electromagnetic

10 Available at http://astrogeo.org/erm.

wave propagates in a plasma with phase velocity

vp = c√
1 − Nve2

meεoω2

, (19)

where Nv is the electron density, e is the charge of an electron,
me is the mass of an electron, εo is the permittivity of free space,
ω is the angular frequency of the wave, and c is the velocity of
light in a vacuum. Phase velocity in the ionosphere is faster than
the velocity of light in a vacuum.

After integration along the ray path and expanding
expression (19), withholding only the term of the first order,
we get the following expression for additional phase rotation
caused by the ionosphere:

Δφ = − a

ω
, (20)

where ω is the angular frequency and a is

a = e2

2cmeεo

(∫
Nvds1 −

∫
Nvds2

)
. (21)

Here, s1 and s2 are the paths of wave propagation from the
source to the first and second stations of the baseline. If

∫
Nvds

is expressed in units of 1 × 1016 electrons m−2 (so-called total
electron contents (TEC) units), then after having substituted
values of constants, we get a = 5.308018 × 1010 s−1 times the
difference in the TEC values at the two stations.

Since the ionosphere contribution is frequency-dependent,
it distorts the fringe-fitting result. Taking into account that
the bandwidth of the recorded signal is small with respect
to the observed frequency, we can linearize Equation (20)
near the reference frequency ωo: φ = −a/ωo + a(ωi − ω)/ω2

o.
Comparing it with expression (4), we see that the first frequency-
independent term contributes to the phase delay and the second
term, linear with frequency, contributes to the group delay. The
fine fringe search is equivalent to solving the LSQ for τp and τg

using the following system of equations:

τpωo + τg(ωk − ωo) = φi +
a

ωi

, (22)

where index i runs over frequencies and index k runs over
accumulation periods.

A solution of the 2 × 2 system of normal equations that orig-
inates from Equation (22) can be easily obtained analytically.
Gathering terms proportional to a, we express the contribution
of the ionosphere to phase and group delay as τ iono

p = −a/ω2
p

and τ iono
g = a/ω2

g , where ωp and ωg are effective ionospheric
frequencies:

ωp =
√

ωo

∑n
i wi · ∑n

i wi (ωi−ωo)2 −
(∑n

i wi (ωi − ωo)
)2

∑n
i wi (ωi − ωo)

∑n
i wi

(ωi −ωo )
ωi

− ∑n
i wi (ωi −ωo)2 · ∑n

i

wi
ωi

,

ωg =
√ ∑n

i wi · ∑n
i wi (ωi − ωo)2 − (

∑n
i wi (ωi − ωo))2

∑n
i wi (ωi − ωo)2

∑n
i

wi
ωi

− ∑n
i wi · ∑n

i wi
(ωi −ωo )

ωi

,

(23)

here wi is the weight assigned to the fringe phase at the ith
frequency channel.
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Figure 5. Ray traveling from source �s to antenna A pierces the top of the
ionosphere in the point J and the bottom of the ionosphere in the point I. The
ionosphere is considered a thin layer. P is the point on the Earth’s surface
beneath the ionosphere piercing point J.

(A color version of this figure is available in the online journal.)

They have a clear physical meaning: if the wide-band signal
was replaced by a quasi-monochromatic signal with a group or
phase effective ionosphere frequency, then the contribution to
group or phase delay of the wide-band signal would be the same
as the contribution of the quasi-monochromatic signal at those
effective frequencies.

To compute the contribution of the ionosphere, we used
the TEC maps from analysis of linear combinations of GPS
observables made at two frequencies, 1.2276 and 1.57542 GHz.
Using GPS-derived TEC maps for data reduction of astronomic
observations, first suggested by Ros et al. (2000), has became a
traditional approach for data processing. Analysis of continuous
GPS observations from a global network comprising 100–300
stations makes it feasible to derive an empirical model of the
TEC over the span of observations using the data assimilation
technique. Such a model has been routinely delivered by GPS
data analysis centers since 1998. For our analysis we used the
TEC model provided by the GPS analysis center CODE (Schaer
1998). The model gives values of TEC in the zenith direction
on a regular 3D grid with resolutions 5◦ × 5◦ × 2h.

For the purpose of modeling, the ionosphere is considered a
thin spherical layer with constant height H above the Earth’s
surface. The typical value of H is 450 km. In order to compute
the TEC from GPS maps, we need to know the coordinates of
the point at which the ray pierces the ionosphere—point J in
Figure 5. First, we find the distance from the station to the iono-
sphere piercing point D = |AJ| by solving triangle OAJ. Notic-
ing that |OA| = R⊕ and |OJ| = R⊕ + H , we immediately get

β = arcsin
cos E

1 + H
R⊕

,

D = R⊕

√
2

H

R⊕
(1 − sin (E + β)) +

(
H

R⊕

)2

, (24)

where E is the elevation of the source above the horizon.

Then the Cartesian coordinates of point J are �r + D�s.
Transforming them into polar coordinates, geocentric latitude
and longitude, we get arguments for interpolation in the 3D grid.
We used the 3D B-spline interpolation by expanding the TEC
field into the tensor products of basic splines of the third degree.
Interpolating the TEC model output, we get the TEC through
the vertical path |JIo|. The slanted path |JI1| is |JIo|/ cos β.
Therefore, we need to multiply the vertical TEC by 1/ cos β(E),
which maps the vertical path delay through the ionosphere into
the slanted path delay. Here we neglect the ray path bending
in the ionosphere. We also neglect Earth’s ellipticity, since
the Earth was considered spherical in the data assimilation
procedure of the TEC model.

Combining equations, we get the final expression for the
contribution of the ionosphere to path delay:

τiono = ± a

4π2f 2
eff

TEC
1

cos β(E)
, (25)

where feff is the effective cyclic frequency, the plus sign is for
the group delay, and the minus sign is for the phase delay.

Computation of the theoretical path delay and its par-
tial derivatives over model parameters is made using VTD
software.11

3.5. Astrometric Analysis: Parameter Estimation

Astrometric analysis is made in several steps. First, each indi-
vidual 24 hr session is processed independently. The parameter
estimation model includes estimation of (1) clock functions
presented as a sum of a second-degree polynomial and a linear
spline over 60 minutes, (2) residual zenith atmosphere path de-
lay for each station presented as a linear spline, (3) coordinates
of all stations, except a reference station, and (4) coordinates
of the target sources. The goal of the coarse solution is to iden-
tify and suppress outliers. The main reasons for outliers are (1)
errors in determining the global maximum of the fringe ampli-
tude during fringe search and (2) false detections. Both errors
decrease with increasing the SNR. Because of this, we initially
run our solution by restricting to SNR � 6, and then restore
good detections with SNR in the range of [5, 6].

After identifying outliers and removing them from our solu-
tion, we apply estimates of the parameters of the a posteriori
model to outliers, which allows us to predict the path delay with
accuracy better than 500 ps, except for sources that had fewer
than two detections. Then we re-run the fringe search for outliers
and restrict the search window to ±1000 ps with respect to pre-
dicted delay. We also lower the SNR detection limit to 4.8, since
the number of independent samples in the restricted search win-
dow, and therefore, the probability of false detection at a given
SNR is less. This procedure allows to restore from 50% to 80%
of observations marked as outliers in the previous step. The
weights of observables were computed as w = 1/

√
σ 2

o + r2(b),
where σo is the formal uncertainty of group delay estimates and
r(b) is the baseline-dependent re-weighting parameter that was
evaluated in a trial solution to make the ratio of the weighted
sum of the squares of residuals to its mathematical expectation
to be close to unity using the technique similar to that used for
fine fringe search.

Finally, we run a global VLBI solution that uses all available
observations to date, 7.56 million, from 1980 April through
2010 August in a single LSQ run. The estimated parameters are
as follows.
11 Available at http://astrogeo.org/vtd.

11
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1. global (over the entire data set): coordinates of 4924
sources, including target objects in the VGaPS campaign,
positions and velocities of all stations, coefficients of
B-spline expansion that model non-linear motion of 17
stations, coefficients of harmonic site position variations
of 48 stations at four frequencies: annual, semi-annual,
diurnal, semi-diurnal, and axis offsets for 67 stations.

2. local (over each session): tilts of the local symmetric axis
of the atmosphere (also known as “atmospheric azimuthal
gradients”) for all stations and their rates, station-dependent
clock functions modeled by second-order polynomials,
baseline-dependent clock offsets, and the Earth orientation
parameters.

3. segmented (over 20–60 minutes): coefficients of linear
splines that model atmospheric path delays (20 minutes seg-
ment) and clock functions (60 minutes segment) for each
station. The estimates of clock functions absorb uncali-
brated instrumental delays in the data acquisition system.

The rate of change for the atmospheric path delays and
clock functions between adjacent segments was constrained to
zero with weights reciprocal to 1.1 × 10−14 and 2 × 10−14,
respectively, in order to stabilize solutions. We apply no-net
rotation constraints on the positions of 212 sources marked as
“defining” in the ICRF catalog (Ma et al. 1998) that requires the
positions of these sources in the new catalog to have no rotation
with respect to the position in the ICRF catalog to preserve
continuity with previous solutions.

The global solution sets the orientation of the array with
respect to an ensemble of ∼5000 extragalactic remote radio
sources. The orientation is defined by the series of Earth
orientation parameters and parameters of the empirical model
of site position variations over 30 years evaluated together
with source coordinates. Common sources observed in VGaPS
as atmosphere and amplitude calibrators provide a connection
between the new catalog and the old catalog of compact sources.

3.6. Astrometric Analysis: Assessment of
Weights of Observations

As follows from the Gauss–Markov theorem, the estimate of
parameters has minimum dispersion when observation weights
are chosen reciprocal to the variance of errors. The group delays
used in the analysis have errors due to the thermal noise in fringe
phases and due to mismodeling theoretical path delay in the
atmosphere

σ 2 = σ 2
th + σ 2

io + σ 2
na, (26)

where σ 2
th is the thermal noise, and σ 2

io and σ 2
na are the contribu-

tion of the ionosphere and the neutral atmosphere to the error
budget, respectively.

3.6.1. A Priori Errors of the GPS Ionosphere Model

The first term, σ 2
th, was estimated during the fringe fitting.

The second term can only be evaluated indirectly. Sekido et al.
(2003) used six dual-band intercontinental VLBI sessions at
10 stations in 2000 July and compared TEC values from GPS
with TEC estimated from VLBI observables. They drew a
conclusion that the errors in path delay derived from the GPS
TEC model were at the range of 70 ps in the zenith direction at
8.6 GHz. However, the ionosphere path delay is a non-stationary
process. Therefore, great caution should be taken in an attempt to
generalize conclusions made from analysis of a small network
over a short time period. The non-stationarity of ionospheric

fluctuations implies that an exact expression for the variance
of the ionosphere fluctuations during any given period does not
exist, and any expression for the variance is an approximation.

Since 1998 June when the GPS TEC maps became available
through 2010 August, more than 2000 dual-band S/X VLBI
sessions under geodesy and absolute astrometry programs were
carried out, including 92 sessions at the VLBA. It can be
easily shown that the contribution of the ionosphere in the
X band, τxi , can be found from the linear combination of group
delay observables with coefficients that are expressed through
effective ionosphere frequencies at these bands, ωx and ωs ,
defined in expression (23):

τxi = (τx − τs)
ω2

s

ω2
x − ω2

s

. (27)

We used this data set to evaluate the errors of the contribution
of the ionosphere to group delays derived from GPS TEC maps,
considering the ionosphere contribution from dual-band VLBI
observations as true for the purpose of this comparison. We
computed the ionosphere contribution from the GPS model and
from VLBI observations for each session. The root mean squares
(rms) of the differences of the contribution VLBI–GPS was
computed for all sessions and all baselines. We sought regressors
that can predict rms(VLBI–GPS). We expect the short-term
variability of the ionosphere at scales less than several hours
to dominate the errors of the GPS model. The sparseness of the
GPS network and limited sky coverage result in missing high
frequency spatial and temporal variations of the ionosphere.
The turbulent nature of the ionosphere path delay variations
suggests that the rms of the ionosphere model errors due to
missed high frequency variations will be related to the rms of the
low frequency variations either as a linear function or as a power
law. After many tries we found that the following parameter can
serve as a regressor: RG =

√
rms2

g1 + rms2
g2, where rmsgi is

the rms of the GPS path delay at the ith station of a baseline
during a session. The rmsg1 and rmsg2 are highly correlated at

short baselines and
√

rms2
g1 + rms2

g2 > rms(g2 – g1). At long
baselines the ionosphere contribution de-correlates. Therefore,
the dependence of rms(VLBI–GPS) versus RG will depend on
the baseline length and possibly on other parameters. Figure 6
shows examples of this dependence for a short baseline and for
a long baseline.

It is remarkable that rms(VLBI–GPS) versus RG fits reason-
ably well with a linear function. We computed rms(VLBI–GPS)
for each baseline and fitted it to the linear model F +S ·RG. The
floor of the linear fit has a mean value around 20 ps (Figure 7).
As expected, the slope of the fit increases with baseline length
as shown in Figure 8. The growth is linear up to baseline lengths
of 2000 km, which apparently correspond to the decorrelation
of the paths through the ionosphere. The growth of the slope be-
yond baseline lengths of 2000 km is slower and it shows more
scatter.

We use this dependence to predict the rms of the GPS
ionosphere model errors. For each station that participated in the
experiment we computed the rms of the ionosphere variations
in zenith direction. Then we express the predicted variance of
the GPS ionosphere model errors as

σ 2
i =

(
Fb

f 2
t

f 2
eff

)2

+

(
τiono,1 − τ̄ z

1

cos β(E1)

)2

S2
b

+

(
τiono,2 − τ̄ z

2

cos β(E2)

)2

S2
b , (28)
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Figure 6. Dependence of the rms of the differences VLBI minus GPS as a function of RG =
√

rms2
g1 + rms2

g2 for baseline FD-VLBA/PIETOWN, 565 km long (left)
and for baseline LA-VLBA/MK-VLBA, 4970 km long (right). The quantity rmsgi is the rms of GPS path delay at the i station of a baseline during a session. Each
green dot corresponds to one VLBI session. The thick blue straight light is a linear fit through the data.

(A color version of this figure is available in the online journal.)

Figure 7. Floor of the regression model of the dependence of rms(VLBI–GPS)
of RG =

√
rms2

g1 + rms2
g2 for all VLBA baselines as a function of the baseline

length.

(A color version of this figure is available in the online journal.)

where τiono,i is the ionosphere path delay at the ith station
computed using the GPS TEC maps, τ̄ z

1 is the zenith ionosphere
path delay from GPS TEC maps averaged over a 24h period
with respect to the central date of the session, Fb and Sb are
the parameters of the linear model rms(VLBI–GPS) versus
RG for a given baseline, ft is the frequency for which the
model was computed (8.6 GHz), and feff is the frequency of the
experiment for which the model is applied (24.5 GHz). The term
τiono,i − τ̄ z

i

cos β(Ei )
is the difference between the ionosphere path

delay from GPS at a given direction and the average ionosphere
path delay scaled to take into account the elevation dependence.
This term is an approximation of rmsg1 used for computation
of RG.

3.6.2. A Priori Errors of the Path Delay in the Neutral Atmosphere

Rigorous analysis of the errors of modeling the path delay
in the neutral atmosphere is beyond the scope of this paper.
Assuming the dominant errors of the a priori model are due to
high frequency fluctuations of water vapor at scales less than
3–5 hr, we seek a regression model in the form of dependence of
the rms of errors on the total path delay in the non-hydrostatic
component of the path delay. We made several trial runs using
all 123 observing sessions at the VLBA under geodesy and
absolute astrometry programs with reciprocal weights modified

Figure 8. Slope of the regression model of dependence of rms(VLBI-GPS)
of RG =

√
rms2

g1 + rms2
g2 for all VLBA baselines as a function of the baseline

length. The straight lines show a linear approximation of the slope for two
ranges of the baseline length: below and over 2000 km.

(A color version of this figure is available in the online journal.)

according to

σ 2
used = σ 2 +

(
a · τs

τz

)2

. (29)

Here, τs is the contribution of the non-hydrostatic constituent
of the slanted path delay and τz is the non-hydrostatic path
delay in the zenith direction computed by direct integration
of the equations of wave propagation through the atmosphere
using the refractivity computed from the MERRA model, and
a is the coefficient. We found that when coefficient a = 0.02
is used, the baseline length repeatability, defined as the rms of
the deviation of baseline length with respect to the linear time
evolution, reaches the minimum. We adopted the value 0.02 in
our analysis of VGaPS experiments. For typical values of τz,
the added noise is 8 ps in the zenith direction and 80 ps at 10◦
elevation.

3.6.3. Ad Hoc Added Variance of the Noise

For each baseline and each session we also computed an ad
hoc variance of observables that, added in quadrature, makes
the ratio of the weighted sum of squares of post-fit residuals to
their mathematical expectation close to unity in a similar way
as we updated fringe phase weights. Expression (14) was used
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Figure 9. Coherent sum of cross-correlation amplitude, normalized to its value
at the maximum as a function of group delay shift with respect to the maximum
for VGaPS observing sessions. The thick green line shows result of processing
with PIMA. The thin blue line shows results of processing with AIPS. The pattern
of the thin blue line repeats with a period of 76.923 ns.

(A color version of this figure is available in the online journal.)

to compute this variance. This ad hoc variance was applied to
further inflate the a priori observable uncertainties that have
already been corrected for the inaccuracy of the a priori model
of wave propagation through the ionosphere and the neutral
atmosphere according to expressions (28) and (29). In contrast
to expressions (28) and (29), the baseline-dependent ad hoc
variance is elevation-independent.

4. VALIDATION OF THE WIDE-BAND
FRINGE SEARCH ALGORITHM

Using PIMA, we detected 327 target sources versus 136 targets
detected with AIPS, since the AIPS detection limit is lowered by
a factor of

√
8 = 2.83. Thus, the yield of the experiments was

improved by a factor of 2.4—a very significant improvement
that well justified our efforts to create a new software package
for processing astrometric observations.

Another difference is that the results of processing the data
with AIPS have ambiguities in group delay that are reciprocal to
the minimum difference between intermediate frequencies. This
means that the group delays are τg +Kτs , where τs = 76.923 ns
and K is an arbitrary integer number. At the same time, the results
of processing with the wide-band fringe fitting algorithm do not
suffer this problem. The reason for group delay ambiguities
is that the narrow-band fringe fitting algorithm implemented
in AIPS first coherently averages the data within each IF,
and in the second step of fringe fitting it processes a rail of
narrow-band signals. The Fourier transform that describes the
dependency of the amplitude of the coherent sum of the cross-
spectrum on group delay has a periodicity that is reciprocal to the
minimum frequency separation of IFs, 76.923 ns in our case.
The wide-band fringe fitting algorithm does not average the
spectrum. Therefore, the periodicity of the Fourier transform
of the coherent sum of the cross-spectrum in the wide-band
algorithm is equal to the spectral resolution, i.e., 2 mks for
VGaPS experiments. Figure 9 illustrates this difference.

The lack of group delay ambiguities has a profound effect
on determining source positions with poorly known a priori co-
ordinates. In the presence of group delay ambiguities, we had
to solve for source positions first using less precise so-called
narrow-band group delays determined by arithmetic averaging
group delays computed for each IF independently. The accuracy
of these source position estimates is often insufficient to reliably

Table 5
Solution Statistics from 33 Global RDV Sessions

Processed with AIPS and PIMA

Statistics AIPS PIMA PIMA

SNRmin = 5.0 SNRmin = 10.0

No. of obs used 467 769 531 299 472 717
fit wrms 18.40 ps 21.22 ps 19.65 ps
No. of sources 776 800 773
wrms ΔΨ cos εo 0.10 mas 0.12 mas 0.14 mas
wrms Δε 0.10 mas 0.10 mas 0.12 mas
Bas. rep. at 5000 km 4.81 mm 4.75 mm 4.96 mm
Bas. rep. at 9000 km 8.54 mm 8.08 mm 7.95 mm

Notes. The statistics in the central column were computed using all observations.
The statistics in the right column were computed using observations with
SNR > 10.

resolve group delay ambiguities, especially in the presence of
narrow-band group delay outliers. When the number of used
observations is large, say more than 10, the data redundancy
allows us to detect the presence of incorrectly resolved ambi-
guities and fix the problem, but if the number of observations is
small, chances are the error in group delay ambiguity resolution
will not be noticed. In the past, source position estimates made
with less than eight observations were considered unreliable.
The use of the wide-band fringe fitting algorithm eliminates this
problem entirely. Reprocessing the old data revealed that group
delay ambiguities for a considerable number of sources were
indeed resolved incorrectly, which resulted in source position
errors as large as 4′! In contrast, the wide-band fringe fitting
algorithm provides reliable estimates of source positions using
a minimum redundancy of three observations.

Since the wide-band fringe search algorithm is new, we would
like to be sure that the new algorithm does not introduce new
systematic errors with respect to the old one. As a validation test,
we re-processed a set of 33 VLBA absolute astrometry/geodesy
experiments under the RDV program (Petrov et al. 2009) and 12
VLBA absolute astrometry experiments under the K/Q program
(Lanyi et al. 2010). Each test experiment had a duration of 24 hr.

The RDV experiments were observed on a global network,
including all 10 VLBA stations, with dual-band receivers
at 8.6 GHz (X band) and 2.3 GHz (S band), with four IFs
allocated to the X band and four IFs allocated to the S band.
Fringe fitting, outlier elimination, re-weighting, and in the
case of AIPS, group delay ambiguity resolution, were made
independently using PIMA and AIPS. Subsequent data reduction
and parameter estimation were made using identical setups.
Estimated parameters of the solution were the same as in
processing the VGaPS sessions, except for treatment of site
positions: they were treated as local parameters, i.e., estimated
for each session independently.

The statistics of the solution for 33 global RDV sessions using
AIPS and PIMA are shown in Table 5. The weighted root mean
squares (wrms) of the post-fit residuals is larger in the PIMA
solution for two reasons. First, the PIMA solution contains 14%
more points, mainly with SNRs in the range [5.0, 10.0], that
were undetected by the traditional AIPS algorithm. The errors
of these observables are systematically larger. We reran the PIMA
solution and excluded all points with SNR in either the X or S
band less than 10. The difference in wrms post-fit residuals
was significantly reduced. The second reason is that the group
delay formal errors were inflated in PIMA processing to make
the ratio of post-fit residuals of fringe fitting to its mathematical
expectation close to 1. This was not done for the AIPS solutions.
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Figure 10. Systematic differences in source coordinate estimates between solutions using group delays derived by PIMA and by AIPS. Left plot shows Δα cos δ (α),
right plots shows Δδ(δ).

(A color version of this figure is available in the online journal.)

Table 6
Differences Between AIPS and PIMA Positions
of 528 Sources Observed in RDV Experiments

Statistics AIPS–PIMA AIPS–PIMA
SNRmin = 5.0 SNRmin = 10.0

wrms Δα cos δ(α) 0.072 mas 0.020 mas
wrms Δδ(δ) 0.088 mas 0.032 mas

Notes. The differences in the left column were computed using all observations.
The differences in the right column were computed using observations with
SNR > 10.

Another test of goodness of the solution and possible presence
of systematic errors is the so-called baseline length repeatability
test (Petrov et al. 2009). We computed the wrms of baseline
length estimates with respect to the fitted linear model of their
evolution with time. The dependence of the baseline length
wrms with the length of baselines L is fitted by function
R(L) =

√
A2 + B2L. Values of R(L) at L = 5000 km and L =

9000 km are presented in Table 5. We also computed the wrms
of the deviations of estimates of daily offsets of nutation angles
in longitude, Δψ , and nutation in obliquity, Δε, with respect to
the empirical nutation expansion heo_20091201. The statistics
in Table 5 show the satisfactory agreement between AIPS and
PIMA solutions and do not reveal any systematic differences.

Since the goal of VGaPS was to derive source positions,
comparison of the positions from AIPS and PIMA processing is
important to evaluate the level of systematic differences. We thus
computed the differences in source coordinates Δα cos δ(α) and
Δδ(δ). We restricted our analysis to 528 sources that had more
than 64 observations in both AIPS and PIMA in order to avoid
effects of a greater number of observations available in the PIMA
solutions. Plots of these differences are shown in Figure 10 and
position comparisons are shown in Table 6. The table contains
the results from 528 sources observed in RDV sessions with at
least 64 used observations. The second column shows statistics
of differences between AIPS and PIMA with an SNR cutoff of
5. The third column shows the differences between AIPS and
PIMA solutions with an SNR cutoff of 10. These differences are
only about 20% of a typical position uncertainty.

In the right plot of Figure 10, we can see small systematic
declination differences at low declinations. Similar differences
but produced from the PIMA solution made with an SNR cutoff
of 10.0, shown in Figure 11, help us to understand the origin

Figure 11. Systematic differences Δδ(δ) in source coordinate estimates between
solutions using group delays derived by PIMA with SNR cutoff 10 and by AIPS.

(A color version of this figure is available in the online journal.)

of this pattern. When the SNR cutoff is raised to 10, the wrms
of differences are reduced by two to three times to 0.02–0.03
mas and the systematic pattern disappears. For comparison, the
average formal uncertainties for declinations are 0.12 mas and
0.07 mas for right ascensions scaled by cos δ, so the systematic
errors are small. Sources at low declinations observed on a VLBI
array located in the Northern Hemisphere are necessarily taken
at low elevations. Including additional low SNR observations
at low elevations in a solution, which are unavailable in the
AIPS solutions, changes the contribution of systematic errors
due to mismodeling path delay in the neutral atmosphere that
are higher at low elevations. At present, it is not clear whether
including observations with SNRs in the range 5–10 increases
systematic errors, or the opposite. However, the magnitude of
the differences, less than 0.5 mas as declinations in the range
[−50◦,−25◦], does not raise a concern.

Finally, we have re-analyzed 12 VLBA experiments under
the K/Q program. The frequency setup in the K/Q and VGaPS
campaigns was identical. Lowering the detection limit by a
factor of

√
8 ≈ 2.83 with the use of the wide-field fringe fit-

ting algorithm greatly helped. Processing the data with PIMA
failed to detect only 8 out of the 340 observed sources, with 61
non-detections in data processing with AIPS. We compiled
Table 7 from statistics of the K/Q solution in a form similar to
Table 5. Analysis of source position differences did not reveal
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Table 7
Solution Statistics from 12 VLBA Experiments at 24 GHz
under the K/Q Program Processed with AIPS and PIMA

Statistics AIPS PIMA PIMA

SNRmin = 5.0 SNRmin = 14.1

No. of obs used 104 887 139 213 105 761
fit wrms 19.50 ps 23.08 ps 19.19 ps
No. of sources 279 332 276
wrms ΔΨ cos εo 0.13 mas 0.10 mas 0.09 mas
wrms Δε 0.18 mas 0.13 mas 0.14 mas
Bas. rep. at 5000 km 5.56 mm 4.58 mm 4.58 mm
Bas. rep. at 9000 km 9.29 mm 7.36 mm 7.32 mm

Notes. The statistics in the central column were computed using all observations.
The statistics in the right column were computed using observations with
SNR > 10.

Table 8
Differences between AIPS and PIMA Positions of 244

Sources Observed in the K/Q VLBA Experiments

Statistics AIPS–PIMA AIPS–PIMA
SNRmin = 5.0 SNRmin = 10.0

wrms Δα cos δ(α) 0.062 mas 0.060 mas
wrms Δδ(δ) 0.108 mas 0.096 mas

Notes. The differences in the left column were computed using all observations.
The differences in the right column were computed using observations with
SNR > 10.

any pattern of systematic errors. The statistics of these differ-
ences presented in Table 8 do not exceed formal uncertainties of
positions which are 0.08 mas and 0.14 mas in right ascensions
scaled by cos δ and declination, respectively. The first column
is four sources with an SNR cutoff of 5, and the second col-
umn with an SNR cutoff of 5 · √

8 = 14.1. The baseline length
repeatability and the wrms of nutation offset time series from
PIMA solutions are 20%–30% smaller. We do not have an ex-
planation for why the PIMA solution produces noticeably better
results for 24 GHz observations, but no significant improvement
was found from analysis of S/X RDV experiments.

The above results of analysis of validation runs processing
0.6 million observations at K,X, and S bands, collected during
1080 hr of recording at the VLBA and the global VLBI network
with both AIPS and PIMA demonstrate that the new wide-band
algorithm for group delays does not introduce any significant
systematic errors while detecting more sources because it
evaluates group delays using the coherent sum of the data
across the wide-band. We conclude that PIMA has passed major
validation tests.

5. INVESTIGATION OF SYSTEMATIC ERRORS
IN SOURCE POSITIONS

Using single-band data, ionosphere path delay mismodeling
may produce systematic position errors. Lanyi et al. (2010)
showed that in their analysis of K-band observations systematic
errors reached several mas and had a tendency to be larger at low
declinations. In Section 3.6.1 we evaluated the rms of random
errors caused by ionosphere path delay mismodeling. However,
inflating weights to account for the variance of errors in general
does not guarantee that source positions will have no systematic
errors.

To evaluate the magnitude of possible ionosphere driven sys-
tematic errors we made the following Monte Carlo simulation.

Figure 12. Modeled systematic errors Δαi (δ) cos δ driven by the mismodeling
ionosphere path delay contribution evaluated from the Monte Carlo simulation.

(A color version of this figure is available in the online journal.)

Figure 13. Modeled systematic errors Δδi (δ) driven by the mismodeling
ionosphere path delay contribution evaluated from the Monte Carlo simulation.

(A color version of this figure is available in the online journal.)

We added to the theoretical path delay the zero-mean Gaus-
sian noise M · N (0, σi), with a variance σi computed accord-
ing to expression (28). The noise was magnified M times in
order to make the contribution of ionosphere path delay errors
dominant over other sources of errors. We made 64 analysis
runs of VGaPS data using different seeds of the random noise
generator. The magnification factor 100 was used. Thus, we
produced 64 estimates of position of each source with added
noise. We computed the rms of position estimates of each tar-
get source and divided it by M. To the extent of the validity of
expression (28), these rms’s represent expected errors due to the
inadequacy of the ionosphere path delay models based on using
the TEC models derived from GPS analysis. Plots of Δαi(δ)
and Δδi(δ) errors are shown in Figures 12 and 13. For 90% of
the sources, errors are at the level of 0.02–0.04 mas. Δδ(δ) in-
creases to 0.1 mas at declinations less than −20◦, and for some
sources may reach 0.4 mas. The disparity in systematic errors
for sources at comparable declinations reflects the disparity in
the number of observables used in the solution.

For assessment of remaining systematic errors we exploited
that fact that 56 known sources were observed as amplitude and
atmospheric calibrators. Positions of these sources are known
from previous dual-band the S/X observations with accuracies
better than 0.1 mas. We split the set of 56 calibrators into two
subsets of 28 objects and ran two additional solutions. In the
first solution we suppressed 28 calibrators in all sessions except
VGaPS and determined their positions solely from VGaPS. In
the second solution we did the same with the second subset.
Considering that the positions of calibrators from numerous
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S/X observations can be regarded as true for the purposes of
this comparison, we treated the differences as VGaPS errors.

We computed the χ2 per degree of freedom statistics for the
differences in right ascensions and declinations Δα and Δδ and
sought additional variances vα and vδ which, being added in
quadrature to the source position uncertainties, will make them
close to unity:

χ2
α

ndf
=

∑k=n
k=1 Δα2

k cos2 δk

n
∑k=n

k=1

√
σ 2

α,k cos2 δk + α2
i,k + v2

α cos2 δk

χ2
δ

ndf
=

∑k=n
k=1 Δδ2

k

n
∑k=n

k=1

√
σ 2

δ,k + δ2
i,k + v2

δ

. (30)

The denominator in Equation (30) is a mathematical expecta-
tion of the sum of squares of differences, provided the estimates
of source positions are statistically independent.

We found the following additive corrections of the uncer-
tainties in right ascensions scaled by cos δ and for declinations,
respectively: vα = 0.08 mas and vδ = 0.120 mas.

The final inflated errors of source positions, σ 2
α (f ) and σ 2

δ (f ),
are

σ 2
α (f ) = σ 2

α + v2
α + α2

i / cos2 δ,

σ 2
δ (f ) = σ 2

δ + v2
δ + δ2

i .
(31)

The positions of some sources may indeed be different due
to the core-shift effect (Kovalev et al. 2008; Porcas 2009).
Treatment of this shift as VGaPS errors makes our estimates
of re-weighting parameters and therefore reported final inflated
errors somewhat too conservative.

6. IMAGING

For imaging purposes we performed the a priori calibration
of the data following a traditional method, using AIPS (Greisen
1988). In the future, we plan to introduce all extra steps required
for an accurate amplitude calibration into PIMA as well.

We followed the usual AIPS initial VLBA calibration
procedure involving a priori amplitude calibration with mea-
sured antenna gain curves and system temperatures as well as
sampling-based calibration adjustments. Atmospheric absorp-
tion is significant at 24 GHz. We have estimated its effect using
system temperature data covering the whole range of elevations
and weather information in order to adjust visibility amplitudes
for the opacity. Typical values of the opacity were found to
range between 0.03 and 0.1 for different VLBA telescopes and
observing epochs. We performed phase calibration using the
phase calibration signal injected during observations and fringe
fitting. A separate solution for station-based group delay and
phase delay rate was made for each frequency channel (IF). As
the final step of calibration, bandpass corrections were deter-
mined and applied.

Our observations were scheduled around 24 GHz since the
K-band continuum performance is better at this frequency,
away from the water line. Unfortunately, at the time of these
observations most of the VLBA telescopes had no gain curve
measurements close to 24 GHz. That has changed since 2007
when regular 24 GHz gain curve measurements started to be
performed at all VLBA stations. For all VLBA antennas except
MK-VLBA and HN-VLBA we have used gain curves measured
at 22.2 GHz while for the former the curves at 23.8 GHz were
applied. Antenna efficiency and the noise diode spectrum change

with frequency (see, e.g., Petrov et al. 2007b, as well as results
of VLBA gain curve measurements at 22 and 24 GHz after
2007).12 This is one of the main sources of the total amplitude
calibration uncertainty. Additionally, IFs in our experiment are
widely spread (Table 2) which might introduce extra amplitude
shifts. We used strong flat-spectrum sources in the sample in
order to estimate global relative amplitude correction factors
for different IFs but did not find any to be larger than 10% with
high confidence. No extra frequency channel specific amplitude
corrections were applied to the data.

After a priori calibration, data were imported to the Caltech
DIFMAP package (Shepherd 1997), visibility data were flagged,
and images were produced using an automated hybrid imaging
procedure originally suggested by Greg Taylor (Pearson et al.
1994) which we optimized for our experiment. The procedure
performs iterations of phase and amplitude self-calibration
followed by CLEAN image reconstruction. We were able to
reach the VLBA image thermal noise level for most of our final
CLEAN images. Examples of three images for compact and
resolved objects are shown in Figure 14.

Total errors of our measurements of correlated flux density
values for sources stronger than ∼200 mJy were dominated by
the accuracy of the amplitude calibration described above. This
considers the error of amplitude calibration as not exceeding
15% and this estimate is confirmed by our comparison of the
flux densities integrated over the VLBA images with the single-
dish flux densities which we measured with RATAN-600 in 2006
for slowly varying sources without extended structure. Details
of the RATAN-600 single-dish observing program including
the method of observations and data processing can be found in
Kovalev et al. (1999, 2002).

7. THE CATALOG OF SOURCE POSITIONS

Of 487 sources observed, three or more detections were found
for 327 objects. After careful identification and removal of
outliers due to the incorrect selection of the global maximum for
weak sources with SNR < 6, we selected 33,452 observations
out of 59,690 from three VGaPS experiments for analyzing
in the single LSQ solution together with 7.56 million other
VLBI observations. The semi-major error ellipses of inflated
position errors for all sources except 0903+154 vary in the range
0.21–20 mas with the median value of 0.85 mas. The histogram
of position errors is shown in Figure 15.

The VGaPS catalog is listed in Table 9. Although positions
of all 5047 astrometric sources were adjusted in the LSQ
solution that included the VGaPS sources, only coordinates
of 327 target sources observed in the VGaPS campaign are
presented in the table. The first column gives calibrator class:
“C” if the source is recommended as a calibrator or “U” if
it has an unreliable position, since there were less than five
detections and there is a risk that the secondary maximum of the
coherent sum of weighted complex cross-correlation samples
has been picked and has not been flagged out. The second
and third columns give the IVS source name (B1950 notation)
and IAU name (J2000 notation). The fourth and fifth columns
give source coordinates at the J2000.0 epoch. Columns 6
and 7 give source position uncertainties in right ascension and
declination in mas after applying inflated errors according to
Equation (31) (without cos δ factor), and Column 8 gives the
correlation coefficient between the errors in right ascension
and declination. The number of group delays used for position

12 http://www.vlba.nrao.edu/astro/VOBS/astronomy/vlba_gains.key
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Figure 14. From top to bottom. Row 1: naturally weighted CLEAN images at 24 GHz. The lowest contour is plotted at the level given by “clev” in each panel title
(Jy beam−1), the peak brightness is given by “max” (Jy beam−1). The contour levels increase by factors of two. The dashed contours indicate negative flux. The beam
is shown in the bottom left corner of the images. Row 2: dependence of the correlated flux density on projected spacing. Each point represents a coherent average over
one 2 minute observation on an individual interferometer baseline. The error bars represent only the statistical errors.

Figure 15. Histogram of the semi-major axes of inflated position error ellipses
among 327 target sources in the VGaPS catalog. The last bin shows errors
exceeding 4.75 mas.

determination is listed in Column 9. Column 10 gives the
estimate of the flux density integrated over the entire map. This
estimate is computed as a sum of all CLEAN components if
a CLEAN image was produced. If we did not have enough
detections of the visibility function to produce a reliable image,
the integrated flux density is estimated as the median of the
correlated flux density measured at projected spacings less than
70 Mλ. The integrated flux density is the source total flux density
with spatial frequencies less than 12 Mλ filtered out, or in other
words, the flux density from all details of a source with size less
than 20 mas. Column 11 gives the flux density of unresolved
components estimated as the median of correlated flux density
values measured at projected spacings greater than 400 Mλ. For

some sources no estimates of the unresolved flux density are
presented, because either no data were collected at the baselines
used in calculations, or these data were unreliable.

An online version of this catalog is available.13 For each
source it has four references: to a FITS file with CLEAN
components of naturally weighted source images, to a FITS file
with calibrated visibility data, to a postscript map of a source,
and to a plot of correlated flux density as a function of the length
of the baseline projection to the source plane.

In Table 10, we present a priori coordinates, total flux
densities extrapolated to 24 GHz and spectral index estimates
for 160 target objects that have not been detected in the VGaPS
experiment. Some of these sources were detected in other VLBI
astrometry experiments in the S/X bands.

8. COMPARISON OF K- AND S/X-BAND
ASTROMETRIC VLBI POSITIONS

We searched the VLBI archive and found that among our
target sources, 206 were observed with S/X at the VLBA
under VCS and RDV programs before 2010 November. We
investigated the differences in K-band observations against
independent S/X observations. We restricted our analysis to 192
objects that had uncertainties from X/S and K-band solutions
less than 5 mas. Figures 16 (top and bottom) show the differences
in right ascensions and declinations.

8.1. Special Cases: 3C 119 and 3C 410

Positions of two sources, J0432+4138 (also known as 3C119)
and J2020+2942 (3C410) are found to be significantly off,

13 http://astrogeo.org/vgaps
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Table 9
VGaPS Catalog

Correlated Flux
Source Name J2000.0 Coordinates Errors (mas) Density (in Jy)

Class IVS IAU Right Ascension Declination Δα Δδ Corr No. of Obs. Total Unres
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

C 2358 + 605 J0001 + 6051 00 01 07.099852 + 60 51 22.79800 0.94 0.51 −0.115 123 0.11 0.11
C 2359 + 606 J0002 + 6058 00 02 06.696680 + 60 58 29.83950 4.42 1.92 −0.168 26 0.09 <0.08
C 0002 + 541 J0005 + 5428 00 05 04.363368 + 54 28 24.92414 0.60 0.47 0.167 79 0.34 0.11
C 0003 + 505 J0006 + 5050 00 06 08.249784 + 50 50 04.41150 0.68 0.81 −0.041 64 0.16 0.14
C 0005 + 568 J0007 + 5706 00 07 48.468649 + 57 06 10.43705 1.81 2.18 0.631 46 0.08 0.09
C 0012 + 610 J0014 + 6117 00 14 48.792125 + 61 17 43.54198 0.57 0.29 −0.034 153 0.25 0.16
C 0024 + 597 J0027 + 5958 00 27 03.286191 + 59 58 52.95899 0.56 0.34 −0.214 136 0.23 0.16
C 0032 + 612 J0035 + 6130 00 35 25.310605 + 61 30 30.76122 0.94 0.52 −0.038 117 0.13 0.10
C 0034−220 J0037−2145 00 37 14.825799 −21 45 24.71171 1.17 2.78 −0.834 59 0.09 0.09
C 0039 + 568 J0042 + 5708 00 42 19.451680 + 57 08 36.58569 0.39 0.25 0.046 162 0.48 0.32
C 0041 + 677 J0044 + 6803 00 44 50.759596 + 68 03 02.68540 0.67 0.29 −0.163 154 0.23 0.19
C 0044 + 566 J0047 + 5657 00 47 00.428864 + 56 57 42.39373 0.53 0.39 0.006 154 0.18 0.13

Notes. Units of right ascension are hours, minutes, and seconds. Units of declination are degrees, minutes, and seconds.

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms in the online journal. A portion is shown here for guidance regarding
its form and content.)

Table 10
List of 160 Sources That Have Not Been Detected in VGaPS Observations

Source Names Right Ascension Declination Gal. Lat. Flux Sp. Ind. No.

(1) (2) (3) (4) (5) (6) (7) (8)
(h m s) (◦′ ′′) (deg) (mJy)

2359 + 548 J0002 + 5510 00 02 00.470 + 55 10 38.00 −6.8 121. −0.03 2
0003 + 669 J0006 + 6714 00 06 10.000 + 67 14 38.30 5.0 . . . . . . 0
0009 + 655 J0012 + 6551 00 12 37.671 + 65 51 10.82 3.5 195. −0.59 8
0010 + 722 J0013 + 7231 00 12 58.750 + 72 31 12.76 10.1 501. 0.02 8
0017 + 590 J0020 + 5917 00 20 24.550 + 59 17 30.50 −3.1 324. −0.02 6
0018−194 J0021−1910 00 21 09.370 −19 10 21.30 −79.6 . . . . . . 0
0028 + 592 J0031 + 5929 00 31 03.120 + 59 29 45.30 −3.0 3855. 1.52 2
0041 + 660 J0044 + 6618 00 44 41.300 + 66 18 42.00 3.7 119. −0.91 7
0107 + 562 J0110 + 5632 01 10 57.553 + 56 32 16.93 −5.9 267. −0.66 10
0113 + 241 J0116 + 2422 01 16 38.067 + 24 22 53.72 −37.8 168. −0.03 7
0128 + 554 J0131 + 5545 01 31 13.860 + 55 45 13.20 −6.4 150. −0.06 5

Notes. Columns 1 and 2 show IAU B1950 and J2000 source names, Columns 3–5 show a priori sources positions
at the J2000.0 epoch, Column 6 shows extrapolated a priori total flux density at 24 GHz, Column 7 shows coarse
estimate of the spectral index, and Column 8 shows the number of measurements of flux density found in the CATS
database that were used for evaluation of the flux spectral index and extrapolation the flux density.

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms in the online journal.
A portion is shown here for guidance regarding its form and content.)

namely 38.3 and 38.0 mas, respectively. The significance of this
offset, 55 and 72 times the inflated uncertainties, is too high to
be explained by known error sources. RATAN-600 observations
have shown that both of them continuously show steep radio
spectra and are slowly variable. On VLBI scales, they were
found to have significantly extended structures (e.g., Figures 17
and 18).

One of these compact steep spectrum radio sources, the object
J0432+4138, is well studied at parsec scales. Recent high-
dynamic range images at 5 and 8.4 GHz and a full bibliography
on historic observations can be found in Mantovani et al. (2010).
This source shows several bright components at 24 GHz. Two of
them, namely components “A” and “C” (Figure 17), are located
40.6 mas apart. The feature C is stronger, with a total flux
density of 0.54 Jy, but more extended. The FWHM of a circular
Gaussian component fitted to the feature is found to be 1.4 mas.
The feature A is dimmer, 0.13 Jy, but more compact—0.3 mas.

We note that here and below in this section the total flux density
reported for different source features is calculated as a sum of all
CLEAN components representing the corresponding structure.
The Gaussian components fit is being performed in the visibility
plane.

It is evident that the VGaPS 24 GHz observations referred
to the position of the weaker A component, while the S/X ob-
servations referred to the position of the C component. This is
counter-intuitive. Since component C is resolved, its contribu-
tion to the fringe amplitude is small at long baseline projections.
At short baseline projections component C dominates; at long
baseline projections component A dominates, but since the par-
tial derivative of group delay with respect to source position
is proportional to the baseline length projection on the source
tangential plane, the contribution of long baseline dominates
in estimates of source position. According to Mantovani et al.
(2010), the total flux density of components A and C at 8.4 GHz
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Figure 16. Differences in right ascensions scaled by cos δ (top) and declinations
(bottom) from K-band VGaPS vs. S/X historical VLBA observations among 164
sources with uncertainties less than 2 mas. The positions of the two sources differ
significantly.

(A color version of this figure is available in the online journal.)

Figure 17. Naturally weighted K-band VGaPS CLEAN image of 3C119. The
lowest contour of 4.1 mJy beam−1 is chosen at three times the rms noise, and
the peak brightness is 97 mJy beam−1. The contour levels increase by factors of
two. The dashed contours indicate negative brightness. The beam’s FWHM is
shown in the bottom left corner of the images in gray. Red and blue spots indicate
the positions and sizes (FWHM) of circular Gaussian model components for
the features “A” and “C,” respectively.

(A color version of this figure is available in the online journal.)

in 2001 was 70 mJy and 1121 mJy, respectively. This large dif-
ference between components’ flux densities is also supported by
the previous VCS1 observations of this object in the S/X bands.

Figure 18. Naturally weighted S-band CLEAN image of 3C410 redone by us
using VCS2 VLBA observations from 2002 May 14. The lowest contour of
2.5 mJy beam−1 is chosen at three times the rms noise, the peak brightness is
242 mJy beam−1. The contour levels increase by factors of two. The dashed
contours indicate negative brightness. The beam’s FWHM is shown in the
bottom left corner of the images in gray. Red and blue spots indicate the positions
and sizes (FWHM) of circular Gaussian model components for the features “A”
and “D,” respectively. It should be noted that feature A is very extended and the
single Gaussian component does not represent it well.

(A color version of this figure is available in the online journal.)

Component C is less resolved at 8.4 GHz and it dominates over
A even at long baselines. Therefore, coordinates of a source
in the X band are closer to the C component. We checked this
directly by suppressing observations at baselines longer than
800 km in a K-band trial solution. The position estimate became
close to the S/X position. It is worth noting that the difference
in position in the K and X bands are 29.2 ± 0.4 mas in right
ascension and 24.1 ± 0.4 mas in declination, while the offset
of component A with respect to component C in the K band is
slightly larger: 30.25 ± 0.10 mas and 27.05 ± 0.15 mas. The
K-band and X-band positions are not exactly the position of
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Table 11
Position Difference of J2020+2942 at Different

Frequencies with Respect to Its Position in the X Band

Band R.A. Shift Decl. Shift

X 0.0 ± 0.58 mas 0.0 ± 0.71 mas
S 25.77 ± 4.11 mas 478.79 ± 4.39 mas
X/S −2.29 ± 0.54 mas −36.78 ± 0.66 mas
K 0.25 ± 0.41 mas 1.45 ± 0.70 mas

Note. The offset in right ascension is scaled by cos δ.

components A and C, since in both solutions the contribution of
the second component is small but not entirely negligible.

The nature of the difference in positions of J2020+2942 is
similar. It was observed in the VCS2 experiment on 2002 May
15 (Fomalont et al. 2003). It had 63 detections in the S band
and 72 detections in the X band. The position of this source
in the S band from analysis of only S-band data applying the
ionosphere contribution from the GPS TEC model shows a very
large offset of 0.′′5 with respect to the X-band position (refer to
Table 11). The errors of the ionosphere contribution in the
S-band during the solar maximum affected position estimates
considerably, however, not to that extent. A comparison of the
positions of 130 sources with δ > 0 from the solution that used
only S-band group delay observables with respect to the X/S
solution in that experiment showed differences in the range 2–7
mas. It is remarkable that the X/S position is away from both
X- and S-band positions, although intuitively we can expect
them to be between X and S positions. This can be explained if
we surmise that the source J2020+2942 has two components,
0.′′48 apart, one of which is visible in the X band, but not
visible in the original S-band image, and another which is
visible in the S band, but not in the X band. An ionosphere-free
linear combination of X- and S-band observables is used in the
X/S solution: (1 + β)τgx −βτgs , where β = 1/(ω2

x/ω
2
s − 1) as it

follows from Equation (27). In the case where the position in the
S band, �ks , is shifted with respect to the X-band position vector,
�kx , the ionosphere free linear combination can be written as

τif = (1 + β)τgx(�kx) − βτgs(�kx) − β
∂τ

∂ �k (�ks − �kx). (32)

The first two terms correspond to a case with no offset
between X- and S-band positions. Therefore, estimates of the
source position from the ionosphere-free linear combination of
observables will be shifted at −β with respect to the offset
(�ks − �kx), i.e., in the opposite direction. Parameter β was
0.076153 in the VCS2 experiment. Therefore, if our hypothesis
that the X-band and S-band observations detected emission from
two components is true, then the shift of the X/S position with
respect to the X-band position should be −1.96 mas in right
ascension and −36.46 in declination, just within 0.3 mas from
the reported S/X positions! The K-band position is within 1.5σ
of the X-band position.

In order to check our hypothesis, we have re-imaged VCS2
observations of J2020+2942 in a wide field and have detected
several previously unknown features “B,” “C,” and “D,” on a
distance up to about 500 mas from the dominating extended
structure “A” in the S band (Figure 18). The total flux density
of the features A and D is 1.40 Jy and 0.09 Jy, respectively.
Feature A is significantly more extended than D. We have fitted
two circular Gaussian components to the uv-data in order to
determine the positions of features A and D. We note that

the accuracy of position determination for component A from
the image is very poor since its structure is extended over at
least 40 mas and is not well represented by a single Gaussian
component. The distance between Gaussian components A and
D is 479 mas, while the positional difference in right ascension
and declination is 25 and 479 mas, respectively—in very
good agreement with independent astrometric measurements
(Table 11).

X-band and K-band wide field imaging (Figure 19) did not
reveal components with wide separation. We conclude from the
astrometric analysis presented above that X- and K-band images
represent the more compact component D. In this case we could
also analyze its spectrum on the basis of simultaneous S/X-band
observations. Its total flux density in the X-band is found to be
0.25 Jy which provides the 2.3–8.6 GHz spectral index estimate
α = +0.8 (flux density ∝ να)—an indication of synchrotron
emission with significant self-absorption. The features A, B,
and C become too weak and/or too resolved for us to detect in
the snapshot VLBA images with a limited dynamic range and
uv-coverage.

8.2. General Comparison: Uncertainties, Systematic
K-S/X-band Difference, and the Core-shift Effect

Position differences for other objects do not show peculiar-
ities. For instance, no declination-dependent systematic differ-
ences similar to those reported by Lanyi et al. (2010) were found.
The wrms of the differences is 0.46 mas in right ascension scaled
by cos δ and 0.61 mas in declination. We have computed the
normalized distances by dividing them by

√
e2
k + e2

xs , where ek
is the projection of the error ellipse of the K-band position to
the direction of position difference and exs is the similar pro-
jection of the error ellipse of the S/X position. In the case if
position errors from K-band and S/X catalogs are independent
and Gaussian with the variance equal to reported uncertainties,
the distribution of normalized distances will be Rayleigh with
σ = 1. The average of the normalized distances over all sources,
except J0432+4138 and J2020+2942, is 1.276, only 2% greater
than the mean of the Rayleigh distribution,

√
π/2. However, a

close examination of the distribution (see Figure 20) reveals a
slight deviation of its shape from the shape of the Rayleigh dis-
tribution. The Rayleigh distribution that best fits the distribution
of normalized distances has σ = 0.90. This is an indication of
a deviation of parent distributions from Gaussian.

We can make several conclusions from this test. First,
on average, reported formal uncertainties are correct within
several percent. Second, the effect of the core-shift is too small
to contribute significantly to results of single-epoch surveys.
According to Kovalev et al. (2008), the typical apparent core-
shift is expected to be 0.4 mas between the S and X bands.
Porcas (2009) stressed that when the core-shift is proportional
to f −1, a source position derived from ionosphere-free linear
combinations of X- and S-band group delays is not sensitive to
the core-shift and corresponds to a true position of the jet base.
The f −1 core-shift dependence is expected for a conical jet
with synchrotron self-absorption in the regime of equipartition
between the jet particle and magnetic field energy densities
(Lobanov 1998). If we assume that this is indeed the case for
the majority of the sources (see also Sokolovsky et al. 2011), the
average core-shift between K-band and effective S/X positions
is reduced to 0.4× fxfs

fk(fx−fs)
= 0.06 mas. Our observations would

allow detection of the core-shift between positions from S/X and
K-band observables the 95% confidence level of a sample of 190
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Figure 19. Naturally weighted X-band (left, VCS2 data) and K-band (right, this survey—VGaPS) CLEAN images of 3C410. The lowest contour in the X- and K-band
is 3.3 and 2.8 mJy beam−1, while the peak brightness is 56 and 178 mJy beam−1, respectively. On the basis of our analysis, we identify the feature presented in this
figure as feature “D” from Figure 18.

(A color version of this figure is available in the online journal.)

Figure 20. Empirical distribution of 190 normalized distances between K band
position of target sources and their X/S positions (broken line) and the best-fit
Rayleigh distribution with σ = 0.90 (solid thick line).

(A color version of this figure is available in the online journal.)

objects if the variance of the core-shift is greater than 1 mas.
VGaPS observations set the upper limit of this variance to 1 mas,
which does not contradict the result of core-shift measurements
and predictions.

9. SUMMARY

In the VLBA Galactic Plane Survey we detected 327 compact
radio sources not previously observed with VLBI at 24 GHz
in absolute astrometry mode. Half of them are within 5◦
of the Galactic plane; 206 of them were also observed and
detected within the VCS or RDV programs in the S/X bands in
absolute astrometry mode. We determined K-band positions of
all detected sources. The position uncertainties for all but one
source are in the range from 0.2 to 20 mas with the median
value of 0.9 mas. The quoted uncertainties account for various
systematic effects and their validity within several percent was
confirmed by comparison with independent S/X observations.
The detection limit of our observations was in the range of
70–80 mJy. For the majority of detected sources, parsec-scale
images were produced, and correlated parsec-scale flux densities

were estimated. These results are presented in the form of the
position catalog, calibrated image and visibility data in FITS
format, and visual plots.

The new wide-band fringe search baseline-oriented algorithm
for processing correlator output has been developed and imple-
mented in the software PIMA. This reduced the detection limit
of the observations by a factor of

√
N , where N is the number of

IFs, by determining group delays, fringe phases at the reference
frequency, and phase delay rates from the coherent sum of the
data from all IFs. The new algorithm increased the number of
detected target sources by a factor of 2.4 for this survey of weak
objects near the Galactic plane. We validated the new algorithm
by parallel processing of 1080 hr, over 0.6 million observations,
using both the traditional AIPS approach and the new approach.
The differences between source position estimates processed
with the wide-field and with the traditional AIPS algorithms
do not exceed 0.15 mas, which is satisfactory for any practical
application.

We investigated possible systematic errors caused by errors
in the ionosphere path delay derived from GPS TEC maps. We
derived an empirical model of the ionosphere-driven delay path
errors. We found that for declinations > − 20◦ for 90% of the
sources, mismodeling path delay caused source position errors
of less than 0.05 mas. At declinations below −20◦ these errors
grow to 0.15 mas and for some sources may reach 0.5 mas.

Comparisons of new K-band VLBI positions with positions
of 192 sources observed in S/X showed an agreement with
the wrms of 0.46 and 0.6 mas in right ascensions and decli-
nation, respectively, within reported position uncertainties for
all but two compact steep spectrum sources J0432+4138 and
J2020+2942. For these two objects, positional differences are
about 40 mas. We showed that the reason for these differences
is that for sources with complex extended structures, positions
referred to different source details. These two objects demon-
strate the existence of an overlooked source of errors in VLBI
position catalogs that will be studied in detail in the future. A
1 mas upper limit on an apparent core-shift effect between 8
and 24 GHz is found for the studied sample, in agreement with
core-shift measurements and predictions by Kovalev et al.
(2008), Sokolovsky et al. (2011), and Porcas (2009).
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